参考文献/References:
[1] Chun Y,Kim J. Autophagy:an essential degradation program for cellular homeostasis and life[J]. Cells,2018,7(12):278.
[2] Mizushima N,Komatsu M. Autophagy:renovation of cells and tissues[J]. Cell,2011,147(4):728-741.
[3] Saha S,Panigrahi DP,Patil S,et al. Autophagy in health and disease:a comprehensive review[J]. Biomed Pharmacother,2018,104:485-495.
[4] Mizushima N,Levine B. Autophagy in human diseases[J]. N Engl J Med,2020,383(16):1564-1576.
[5] Shadel GS,Horvath TL. Mitochondrial ROS signaling in organismal homeostasis[J]. Cell,2015,163(3):560-569.
[6] Lemasters JJ. Selective mitochondrial autophagy,or mitophagy,as a targeted defense against oxidative stress,mitochondrial dysfunction,and aging[J]. Rejuvenation Res,2005,8(1):3-5.
[7] Levine B,Kroemer G. Biological functions of autophagy genes:a disease perspective[J]. Cell,2019,176(1-2):11-42.
[8] Saito T,Sadoshima J. Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart[J]. Circ Res,2015,116(8):1477-1490.
[9] Bayne AN,Trempe JF. Mechanisms of PINK1,ubiquitin and Parkin interactions in mitochondrial quality control and beyond[J]. Cell Mol Life Sci,2019,76(23):4589-4611.
[10] Jin SM,Youle RJ. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria[J]. Autophagy,2013,9(11):1750-1757.
[11] Pankiv S,Clausen TH,Lamark T,et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy[J]. J Biol Chem,2007,282(33):24131-24145.
[12] Fritsch LE,Moore ME,Sarraf SA,et al. Ubiquitin and receptor-dependent mitophagy pathways and their implication in neurodegeneration[J]. J Mol Biol,2020,432(8):2510-2524.
[13] Fader CM,Colombo MI. Multivesicular bodies and autophagy in erythrocyte maturation[J]. Autophagy,2006,2(2):122-125.
[14] Sandoval H,Thiagarajan P,Dasgupta SK,et al. Essential role for Nix in autophagic maturation of erythroid cells[J]. Nature,2008,454(7201):232-235.
[15] Novak I,Kirkin V,McEwan DG,et al. Nix is a selective autophagy receptor for mitochondrial clearance[J]. EMBO Rep,2010,11(1):45-51.
[16] Ding WX,Ni HM,Li M,et al. Nix is critical to two distinct phases of mitophagy,reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming[J]. J Biol Chem,2010,285(36):27879-27890.
[17] Ding WX,Yin XM. Mitophagy:mechanisms,pathophysiological roles,and analysis[J]. Biol Chem,2012,393(7):547-564.
[18] Liu L,Feng D,Chen G,et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells[J]. Nat Cell Biol,2012,14(2):177-185.
[19] Chen G,Han Z,Feng D,et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy[J]. Mol Cell,2014,54(3):362-377.
[20] Dudek J,Hartmann M,Rehling P. The role of mitochondrial cardiolipin in heart function and its implication in cardiac disease[J]. Biochim Biophys Acta Mol Basis Dis,2019,1865(4):810-821.
[21] Tian W,Li W,Chen Y,et al. Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy[J]. FEBS Lett,2015,589(15):1847-1854.
[22] Orvedahl A,Sumpter R Jr,Xiao G,et al. Image-based genome-wide siRNA screen identifies selective autophagy factors[J]. Nature,2011,480(7375):113-117.
[23] Kang R,Livesey KM,Zeh HJ 3rd,et al. Metabolic regulation by HMGB1-mediated autophagy and mitophagy[J]. Autophagy,2011,7(10):1256-1258.
[24] Billia F,Hauck L,Konecny F,et al. PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function[J]. Proc Natl Acad Sci U S A,2011,108(23):9572-9577.
[25] Chen Y,Dorn GW 2nd. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria[J]. Science,2013,340(6131):471-475.
[26] Yussman MG,Toyokawa T,Odley A,et al. Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy[J]. Nat Med,2002,8(7):725-730.
[27] Dorn GW 2nd. Mitochondrial pruning by Nix and BNip3:an essential function for cardiac-expressed death factors[J]. J Cardiovasc Transl Res,2010,3(4):374-383.
[28] Kubli DA,Zhang X,Lee Y,et al. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction[J]. J Biol Chem,2013,288(2):915-926.
[29] Qiao Y,Chen T,Yang H,et al. Small molecule modulators targeting protein kinase CK1 and CK2[J]. Eur J Med Chem,2019,181:111581.
[30] Zhou H,Zhu P,Wang J,et al. Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy[J]. Cell Death Differ,2018,25(6):1080-1093.
[31] Guzmán Mentesana G,Báez AL,Lo Presti MS,et al. Functional and structural alterations of cardiac and skeletal muscle mitochondria in heart failure patients[J]. Arch Med Res,2014,45(3):237-246.
[32] Wang B,Nie J,Wu L,et al. AMPKα2 protects against the development of heart failure by enhancing mitophagy via PINK1 phosphorylation[J]. Circ Res,2018,122(5):712-729.
相似文献/References:
[1]陈忠秀,综述,饶莉,等.线粒体能量代谢异常与病理性心肌肥大的研究进展[J].心血管病学进展,2016,(3):247.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.008]
CHEN Zhongxiu,RAO Li.Mitochondrial Energy Metabolism and Pathological Cardiac Hypertrophy[J].Advances in Cardiovascular Diseases,2016,(3):247.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.008]
[2]吉家钗 陈娟 符策岗.利拉鲁肽通过促进自噬减轻去氧肾上腺素诱导的原代大鼠心肌肥厚[J].心血管病学进展,2019,(7):1067.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.025]
JI jiachai,CHEN juan,FU cegang.Liraglutide protects against hypertrophy induced by phenylephrine in Neonatal Rat Cardiac Myocytes via promoting the autophagy flux[J].Advances in Cardiovascular Diseases,2019,(3):1067.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.025]
[3]高凯 苏艺婉 徐望 李智 谢扬 候钦.线粒体分裂蛋白Drp1与心血管疾病研究进展[J].心血管病学进展,2019,(8):1172.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.026]
GAO Kai,SU Yiwan,XU Wang,et al.Mitochondrial Mitotic Protein Drp1 and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(3):1172.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.026]
[4]季春影 张瑞英.心力衰竭与心肌线粒体代谢[J].心血管病学进展,2020,(1):63.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.017]
JI ChunyingZHANG Ruiying.Heart Failure and Myocardial Mitochondrial Metabolism[J].Advances in Cardiovascular Diseases,2020,(3):63.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.017]
[5]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(3):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[6]甘婷 李景东.哺乳动物雷帕霉素靶蛋白介导的自噬在心血管疾病中作用的研究进展[J].心血管病学进展,2020,(4):365.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.009]
Gan Ting,LI Jingdong.Research progress of mTOR-mediated Autophagy in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(3):365.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.009]
[7]陈稳 叶强.自噬与心房颤动关系的研究进展[J].心血管病学进展,2022,(3):218.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
CHEN Wen,YE Qiang.The Relationship Between Autophagy and Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(3):218.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[8]于颖 龙聪.动脉粥样硬化中自噬与凋亡相互作用的研究进展[J].心血管病学进展,2022,(5):454.[doi:10.16806/j. cnki. issn.1004-3934.2022.05.017]
YU Ying,LONG Cong.Crosstalk Between Autophagy and Apoptosis in Atherosclerosis[J].Advances in Cardiovascular Diseases,2022,(3):454.[doi:10.16806/j. cnki. issn.1004-3934.2022.05.017]
[9]杨伟 苗立坤 陈章荣.自噬与心肌重构研究进展[J].心血管病学进展,2022,(6):535.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.014]
YANG WeiIAO LikunCHEN Zhangrong.Autophagy and Myocardial Remodeling[J].Advances in Cardiovascular Diseases,2022,(3):535.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.014]
[10]林筝鸣 钱航 李东锋 许浩 陈继舜 闵新文 陈俊 杨汉东.胰高血糖素样肽-1受体敲除H9c2细胞株建立及其抗凋亡作用初探[J].心血管病学进展,2022,(9):852.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.019]
LIN Zhengming,QIAN Hang,LI Dongfeng,et al.Establishment of Glucagon-Like Peptide-1 Receptor Knockout H9c2 Cell Line and Its Anti-Apoptotic Effect[J].Advances in Cardiovascular Diseases,2022,(3):852.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.019]