[1]沈文茜 杜国庆.机器学习在超声心动图中的应用进展[J].心血管病学进展,2021,(1):43-46.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 SHEN Wenqian,DU Guoqing.Machine Learning in Echocardiography[J].Advances in Cardiovascular Diseases,2021,(1):43-46.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
点击复制

机器学习在超声心动图中的应用进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年1期
页码:
43-46
栏目:
综述
出版日期:
2021-01-25

文章信息/Info

Title:
Machine Learning in Echocardiography
文章编号:
201912121
作者:
沈文茜 杜国庆
(哈尔滨医科大学附属第二医院超声医学科,黑龙江 哈尔滨 150086)
Author(s):
SHEN WenqianDU Guoqing
(Department of Ultrasound,The Second Affiliated Hospital of Harbin Medical University,Harbin 150086 ,Heilongjiang,China)
关键词:
超声心动图机器学习人工智能
Keywords:
EchocardiographyMachine learningArtificial intelligence
DOI:
10.16806/j.cnki.issn.1004-3934.2021.01.000
摘要:
超声心动图在心血管疾病的诊断和治疗中起着至关重要的作用。然而,超声心动图的解读需相关医生长时间专业经验的积累,因操作者之间经验的不同可能导致错误的诊断。近年来,人工智能和机器学习的发展为超声心动图的解读提供了新的可能性。机器学习是人工智能的一个子集,机器学习模型通过从大型数据库中提取模式来快速获取信息,具有快速、精确及一致等特性。研究表明机器学习应用于超声心动图评估可行,可降低人为错误的风险,但在超声心动图领域的应用仍处于起步阶段。
Abstract:
Echocardiography plays a crucial role in the diagnosis and management of cardiovascular disease. However, the interpretation of echocardiography requires the accumulation of long-term professional experience of the operator. The difference of experience among operators may lead to incorrect diagnosis. The development of artificial intelligence and machine learning provided new possibilities for the interpretation of echocardiography in recent years. Machine learning is a subset of artificial intelligence. By extracting patterns from large databases, the machine learning model can quickly obtain information with the characteristics of rapidity, accuracy and consistency. Studies have shown that machine learning is feasible for echocardiographic assessment and can reduce the risk of human error. However, the application of machine learning in echocardiography is still in its infancy.

参考文献/References:

[1].American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography,American Heart Association. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force,American Society of Echocardiography,American Heart Association,American Society of Nuclear Cardiology,Heart Failure Society of America,Heart Rhythm Society,Society for Cardiovascular Angiography and Interventions,Society of Critical Care Medicine,Society of Cardiovascular Computed Tomography,Society for Cardiovascular Magnetic Resonance American College of Chest Physicians[J].?J Am Soc Echocardiogr,2011,24(3):229-267.
[2].Hoffmann?R,Lethen?H,Marwick?T,et al. Analysis of i nterinstitutional observer agreement in interpretation of d obutamine stress echocardiograms[J]. J Am Coll Cardiol,1996,27(2):330-336.
[3].Lee?JG,Jun?S,Cho?YW,et al. Deep learning in medical imaging:general overview[J]. Korean J Radiol,2017,18(4):570-584.
[4].Narula?S,Shameer?K,Salem Omar?AM,et al. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography[J]. J Am Coll Cardiol,2016,68(21):2287-2295.
[5].Shameer?K,Johnson?KW,Glicksberg?BS,et al. Machine learning in cardiovascular medicine:are we there yet?[J] Heart,2018,104(14):1156-1164.
[6].Fatima?M,Pasha?M. Survey of machine learning algorithms for disease diagnostic[J]. JILSA,2017,9(1):1-16.
[7].Cabitza?F,Rasoini?R,Gensini?GF,et al. Unintended consequences of machine learning in medicine[J]. JAMA,2017,318(6):517-518.
[8].Wolterink?JM,Leiner?T,Takx?RAP,et al. Automatic coronary calcium scoring in non-contrast-enhanced ECG-triggered cardiac CT with ambiguity detection[J]. IEEE Trans Med Imaging,2015,34(9):1867-1878.
[9].Kooi T,Litjens G,van Ginneken B,et al. Large scale deep learning for computer aided detection of mammographic lesions[J]. Med Image Anal,2017,35:303-312.
[10].Esteva?A,Kuprel?B,Novoa?RA,et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature,2017,542(7639):115-118.
[11].Lang RM,Badano LP,Mor-Avi V,et al. Recommendations for cardiac chamber quantification by echocardiography in adults:an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging[J]. Eur Heart J Cardiovasc Imaging,2015,16(3):233-270.
[12].Sengupta PP ,Adjeroh DA. Will artificial intelligence replace the human echocardiographer?[J] Circulation,2018,138(16):1639-1642.
[13].DeCara?JM,Lang?RM,Koch?R,et al. The use of small personal ultrasound devices by internists without formal training in echocardiography[J]. Eur J Echocardiogr,2003,4(2):141-147.
[14].Johnson KW,Soto JT,Glicksberg BS,et al. Artificial intelligence in cardiology[J]. J Am Coll Cardiol,2018,71(23):2668-2679.
[15].Levy F,Schouver ED,Iacuzio L,et al. Performance of new automated transthoracic three-dimensional echocardiographic software for left ventricular volumes and function assessment in routine clinical practice:comparison with 3??Tesla cardiac magnetic resonance[J]. Arch Cardiovasc Dis,2017,110(11):580-589.
[16].Krittanawong C,Tunhasiriwet A,Zhang HJ,et al. Deep learning with unsupervised feature in echocardiographic imaging[J]. J Am Coll Cardiol,2017,69(16):2100-2101.
[17].Khamis H,Zurakhov G,Azar V,et al. Automatic apical view classification of echocardiograms using a discriminative learning dictionary[J]. Med Image Anal,2017,36:15-21.
[18].Abdi AH,Luong C,Tsang T,et al. Automatic quality assessment of echocardiograms using convolutional neural networks:feasibility on the apical four-chamber view[J]. IEEE Trans Med Imaging,2017,36(6):1221-1230.
[19].Madani A,Arnaout R,Mofrad M,et al. Fast and accurate classification of echocardiograms using deep learning[J]. NPJ Digit Med,2018,1:6.
[20].Zhou SK. Shape regression machine and efficient segmentation of left ventricle endocardium from 2D B-mode echocardiogram[J]. Med Image Anal,2010,14(4): 563-581.
[21].Cannesson M,Tanabe M,Suffoletto MS,et al. A novel two-dimensional echocardiographic image analysis system using artificial intelligence-learned pattern recognition for rapid automated ejection fraction[J]. J Am Coll Cardiol, 2007,49(2):217-226.
[22].Knackstedt C,Bekkers SCAM,Schummers G,et al. Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain[J]. J Am Coll Cardiol,2015,66(13):1456-1466.
[23].Tsang W,Salgo IS,Medvedofsky D,et al. Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm[J]. JACC Cardiovasc Imaging,2016,9(7):769-782.
[24].Narang A,Mor-Avi V,Prado A,et al. Machine learning based automated dynamic quantification of left heart chamber volumes[J]. Eur Heart J Cardiovasc Imaging,2019,20(5):541-549.
[25].Volpato V,Mor-Avi V,Narang A,et al. Automated,machine learning-based,3D echocardiographic quantification of left ventricular mass[J]. Echocardiography, 2019,36(2):312-319.
[26].Genovese D,Rashedi N,Weinert L,et al. Machine learning-based three-dimensional echocardiographic quantification of right ventricular size and function:validation against cardiac magnetic resonance[J]. J Am Soc Echocardiogr, 2019,32(8):969-977.
[27].Zoghbi WA,Adams D,Bonow RO,et al. Recommendations for noninvasive evaluation of native valvular regurgitation[J]. J Am Soc Echocardiogr,2017,30(4):303-371.
[28].Thavendiranathan P,Liu S,Datta S,et al. Quantification of chronic functional mitral regurgitation by automated 3-dimensional peak and integrated proximal isovelocity surface area and stroke volume techniques using real-time 3-dimensional volume color Doppler echocardiography:in vitro and clinical validation[J]. Circ Cardiovasc Imaging,2013,6(1):125-133.
[29].de Agustín JA ,Marcos-Alberca P,Fernandez-Golfin C,et al. Direct measurement of proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography in mitral regurgitation:a validation study[J]. J Am Soc Echocardiogr,2012,25(8):815-823.
[30].Choi J,Hong GR,Kim M,et al. Automatic quantification of aortic aegurgitation using 3D full volume color doppler echocardiography:a validation study with cardiac magnetic resonance imaging[J]. Int J Cardiovasc Imaging,2015,31(7):1379-1389.
[31].Jeganathan J,Knio Z,Amador Y,et al. Artificial intelligence in mitral valve analysis[J]. Ann Card Anaesth,2017,20(2):129-134.
[32].陈丽君. 超声心动图评价肥厚型心肌病进展[J]. 心血管病学进展,2017,22(2): 1004-3934.
[33].Narula?S,Shameer?K,Salem Omar?AM,et al. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography[J]. J Am Coll Cardiol,2016,68(21):2287-2295.
[34].Mahmoud A,Bansal M,Sengupta PP. New cardiac imaging algorithms to diagnose constrictive pericarditis versus restrictive cardiomyopathy[J]. Curr Cardiol Rep,2017,19(5):43.

相似文献/References:

[1]郭彩艳 靳春荣.腺苷药物在心血管疾病诊治中的应用进展[J].心血管病学进展,2019,(7):1011.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.012]
 GUO CaiyanJIN Chunrong.Progress in the Application of Adenosine Drugs in the Diagnosis and Treatment of Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(1):1011.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.012]
[2]黄晓凤 熊峰.超声心动图技术在优化心脏再同步化治疗效果中的应用[J].心血管病学进展,2019,(7):1043.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.020]
 HUANG XiaofengXIONG Feng.Application of Echocardiography in Optimizing Cardiac Resynchronization Therapy[J].Advances in Cardiovascular Diseases,2019,(1):1043.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.020]
[3]陈丽娜 练春燕 刘慧.超声心动图评估右心室功能的临床应用价值[J].心血管病学进展,2020,(3):223.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.002]
 CHEN Lina,LIAN Chunyan,LIU Hui.Clinical Application Value of Echocardiography in Evaluating Right Ventricular Function[J].Advances in Cardiovascular Diseases,2020,(1):223.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.002]
[4]徐敏,任卫东,熊峰,等.实时三维超声牛眼图定量评价正常新生儿左心室收缩同步性[J].心血管病学进展,2020,(4):434.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.025]
 XU MinREN WeidongXIONG FengWANG ShuzhenZHANG LijuanHUANG XiaofengLIU ChunxiaLEI Yali.Quantitative Assessment of the Left Ventricular Systolic Synchronicity in Normal Newborns Using Illustration of the Bull Eye with Real-time Three-dimensional Echocardiography[J].Advances in Cardiovascular Diseases,2020,(1):434.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.025]
[5]韩培天 魏晓岩 杜彬彬 张津宁 王文州 郭艳娇 张克成 李春彦 李文慧.心肌缺血时间对STEMI患者急诊PCI术后早期左室舒张功能的影响及相关因素分析[J].心血管病学进展,2020,(6):660.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.024]
 HAN Pei-tian,WEI Xiaoyan,DU Binbin,et al.Effect of Myocardial Ischemia Duration on Early Left Ventricular Diastolic Function in STEMI Patients After Emergency PCI and Analysis of Related Factors[J].Advances in Cardiovascular Diseases,2020,(1):660.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.024]
[6]刘静 彭礼清.心外膜脂肪组织定量评价的影像学进展[J].心血管病学进展,2020,(9):922.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.009]
 LIU Jing,PENG Liqing.Quantitative Evaluation of Epicardial Adipose Tissue Measured by Different Imaging Methods[J].Advances in Cardiovascular Diseases,2020,(1):922.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.009]
[7]申悦竹 杜鑫.心房颤动左心房功能的超声研究进展[J].心血管病学进展,2021,(4):332.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.011]
 SHEN Yuzhu,DU Xin.Echcardiography on Left Atrial Function in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2021,(1):332.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.011]
[8]艾克力亚尔·艾尼瓦尔 马翔.机器学习CNN模型在心血管疾病诊疗中的临床应用及研究进展[J].心血管病学进展,2021,(6):488.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.003]
 Aikeliyaer.ainiwaerMA xiang.Application of Convolutional Neural Network Model of Machine Learning for the Diagnosis and Treatment of Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(1):488.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.003]
[9]倪金荣 雷军强.心肌纤维化的无创影像诊断进展[J].心血管病学进展,2021,(11):1016.[doi:10.16806/j.cnki.issn.1004-3934.2021.11.000]
 NI Jinrong,LEI Junqiang.Noninvasive Imaging Diagnosis of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2021,(1):1016.[doi:10.16806/j.cnki.issn.1004-3934.2021.11.000]
[10]卢甜甜 张轶.射血分数保留性心力衰竭左心室心肌力学变化及评估的研究进展[J].心血管病学进展,2022,(4):331.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.011]
 LU Tiantian,ZHANG Yi?/html>.Changes and Evaluation of Left Ventricular Myocardial Mechanical?n Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2022,(1):331.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.011]

更新日期/Last Update: 2021-03-18