[1]武韧 常贵全 孙凤起 李鸿珠.硫化氢对糖尿病心肌病的保护作用[J].心血管病学进展,2021,(1):52-55.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 WU Ren,CHANG Guiquan,SUN Fengqi,et al.Protective Effect of Hydrogen Sulfide in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(1):52-55.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
点击复制

硫化氢对糖尿病心肌病的保护作用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年1期
页码:
52-55
栏目:
综述
出版日期:
2021-01-25

文章信息/Info

Title:
Protective Effect of Hydrogen Sulfide in Diabetic Cardiomyopathy
文章编号:
202006033
作者:
武韧 常贵全 孙凤起 李鸿珠
(哈尔滨医科大学基础医学院/病理生理学教研室,黑龙江 哈尔滨 150086)
Author(s):
WU RenCHANG GuiquanSUN FengqiLI Hongzhu
(Department of Pathophysiology,School of Basic Medicine,Harbin Medical University,Harbin 150086,Heilongjiang,China)
关键词:
硫化氢糖尿病心肌病心肌细胞
Keywords:
Hydrogen sulfideDiabetic cardiomyopathyCardiomyocytes
DOI:
10.16806/j.cnki.issn.1004-3934.2021.01.000
摘要:
糖尿病心肌病是指发生于糖尿病患者,不能用高血压性心脏病、冠状动脉粥样硬化性心脏病及其他心脏病变来解释的一种特异性心肌病。研究表明,硫化氢作为内源性气体信号分子,对糖尿病心肌病心脏具有保护作用,其机制主要与减轻炎症反应,减轻氧化应激损伤,抑制心肌细胞凋亡,促进自噬有关。
Abstract:
Diabetic cardiomyopathy is a specific cardiomyopathy that occurs in diabetic patients and can not be explained by hypertensive heart disease,arteriosclerosis,or other heart conditions. Studies have shown that hydrogen sulfide,as an endogenous gas signaling molecule,has a protective effect on heart of d iabetic cardiomyopathy patients,and its mechanism is mainly related to reducing inflammation,reducing oxidative stress,inhibiting cardiomyocytes apoptosis,and promoting autophagy

参考文献/References:

[1] Jia G,Whaley-Connell A,Sowers JR. Diabetic cardiomyopathy:a hyperglycaemia- and insulin-resistance-i nduced heart disease[J]. Diabetologia,2018,61(1):21-28.

[2] Kar S,Kambis TN,Mishra PK. Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy[J]. Am J Physiol Heart Circ Physiol,2019,316(6):H1237-H1252.

[3] Murtaza G,Virk HUIH,Khalid M,et al. Diabetic cardiomyopathy—A comprehensive updated review[J]. Prog Cardiovasc Dis,2019,62(4):315-326.

[4] 易登良,曾奇虎,范忠才.外源性硫化氢对糖尿病心肌病保护作用机制的研究进展[J].山东医药,2018,58(46):90-92.

[5] Kolluru GK,Shen X,Kevil CG. Reactive sulfur species:a new redox player in cardiovascular pathophysiology[J]. Arterioscler Thromb Vasc Biol,2020,40(4):874-884.

[6] 张书虎,李静,马兰,等. 硫化氢代谢与神经保护作用[J]. 中华老年多器官疾病杂志,2019,18(4):308-312.

[7] 李敏霞,陈亚红. 硫化氢在肺血管重塑中的调节机制及信号通路[J]. 生理科学进展,2018,49(1):74-78.

[8] 李超,王岩. 硫化氢在糖尿病肾病中的保护作用及机制研究进展[J].检验医学与临床,2018,15(22):3466-3470.

[9] Gheibi S,Jeddi S,Kashfi K,et al. Regulation of vascular tone homeostasis by NO and HS:implications in hypertension[J]. Biochem Pharmacol,2018,149:42-59.

[10] 张源洲,席雨鑫,温馨,等. 硫化氢对衰老缺血心肌细胞保护作用的研究进展[J].基础医学与临床,2019,39(2):252-255.

[11] Barton M,Meyer MR. Hurry up:how hydrogen sulfide protects against atherosclerosis[J]. Circulation,2019,139(1):115-118.

[12] Zhou X,An G,Lu X. Hydrogen sulfide attenuates the development of diabetic cardiomyopathy[J]. Clin Sci(Lond),2015,128(5):325-335.

[13] Qian LL,Liu XY,Chai Q,et al. Hydrogen sulfide in diabetic complications:focus on molecular mechanisms[J]. Endocr Metab Immune Disord Drug Targets,2018,18(5):470-476.

[14] Ritchie RH, Abel ED. Basic mechanisms of diabetic heart disease[J]. Circ Res,2020,126(11):1501-1525.

[15] Corsello T,Komaravelli N,Casola A. Role of hydrogen sulfide in NRF2- and sirtuin-dependent maintenance of cellular redox balance[J]. Antioxidants(Basel),2018,7(10):129.

[16] Meng G,Liu J,Liu S,et al. Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner[J]. Br J Pharmacol,2018,175(8):1126-1145.

[17] Long J,Liu M,Liu S,et al. H2S attenuates the myocardial fibrosis in diabetic rats through modulating PKC-ERK1/2MAPK signaling pathway[J]. Technol Health Care,2019,27(S1):307-316.

[18] Liu M,Li Y,Liang B,et al. Hydrogen sulfide attenuates myocardial fibrosis in diabetic rats through the JAK/STAT signaling pathway[J]. Int J Mol Med,2018,41(4):1867-1876.

[19] Jia Q,Mehmood S,Liu X,et al. Hydrogen sulfide mitigates myocardial inflammation by inhibiting nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome activation in diabetic rats[J]. Exp Biol Med (Maywood),2020,245(3):221-230.

[20] Kuo WW,Wang WJ,Tsai CY,et al. Diallyl trisufide(DATS)suppresses high glucose-induced cardiomyocyte apoptosis by inhibiting JNK/NFκB signaling via attenuating ROS generation[J]. Int J Cardiol,2013,168(1):270-280.

[21] Tran BH,Yu Y,Chang L,et al. A novel liposomal S-propargyl-cysteine:a sustained release of hydrogen sulfide reducing myocardial fibrosis via TGF-β1/Smad pathway[J]. Int J Nanomedicine,2019,14:10061-10077.

[22] Zhao HL,Wu BQ,Luo Y,et al. Exogenous hydrogen sulfide ameliorates high glucose-induced myocardial injury & inflammation via the CIRP-MAPK signaling pathway in H9c2 cardiac cells[J]. Life Sci,2018,208:315-324.

[23] Sciarretta S,Maejima Y,Zablocki D,et al. The role of autophagy in the heart[J]. Annu Rev Physiol,2018,80:1-26.

[24] Xu X,Kobayashi S,Chen K,et al. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes[J]. J Biol Chem,2013,288(25):18077-18092.

[25] Wang B,Yang Q,Sun Y,et al. Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice[J]. J Cell Mol Med,2014,18(8):1599-1611.

[26] Yang F,Zhang L,Gao Z,et al. Exogenous H2S protects against diabetic cardiomyopathy by activating autophagy via the AMPK/mTOR pathway[J]. Cell Physiol Biochem,2017,43(3):1168-1187.

[27] Luo W, Gui DD, Yan BJ,et al. Hydrogen sulfide switch phenomenon regulating autophagy in cardiovascular diseases[J]. Cardiovasc Drugs Ther,2020,34(1):113-121.

[28] Wu J,Tian Z,Sun Y,et al. Exogenous HS facilitating ubiquitin aggregates clearance via autophagy attenuates type 2 diabetes-induced cardiomyopathy[J]. Cell Death Dis,2017,8(8):e2992.

[29] Hetz C,Zhang K,Kaufman RJ. Mechanisms,regulation and functions of the unfolded protein response[J]. Nat Rev Mol Cell Biol,2020,21(8):421-438.

[30] Wang H,Shi X,Qiu M,et al. Hydrogen sulfide plays an important protective role through influencing endoplasmic reticulum stress in diseases[J]. Int J Biol Sci,2020,16(2):264-271.

相似文献/References:

[1]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
 WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(1):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[2]杨沫,姜文锡.线粒体功能异常在糖尿病心肌病发病机制中的作用[J].心血管病学进展,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
 YANG Mo,JIANG Wenxi.Mitochondrial Dysfunction of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(1):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
[3]朱月红,戴启明.糖尿病心肌病的内质网病变机制及干预[J].心血管病学进展,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
 ZHU Yuehong,DAI Qiming.Advance of Mechanism and Intervention of Endoplasmic Reticulum in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(1):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
[4]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(1):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[5]宋元秀 崔鸣.线粒体动力学异常与相关心血管疾病[J].心血管病学进展,2021,(2):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 SONG Yuanxiu,CUI Ming.Correlation Between Mitochondrial Dynamics and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(1):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[6]马韵之 李剑 周鹏.糖尿病心肌病血清生物标志物研究进展[J].心血管病学进展,2021,(5):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
 Serum Biomarkers of Diabetic Cardiomyopathy.[J].Advances in Cardiovascular Diseases,2021,(1):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
[7]李艳鹏 马依彤.糖尿病心肌病治疗策略的研究进展[J].心血管病学进展,2022,(9):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
 LI Yanpeng,MA Yitong.Treatment Strategies for Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2022,(1):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
[8]曹兴丹 陈子仪 宋小刚 张玉秀 陈敏 汤吉超 李萍萍 陈永清 荆哲.EMRE在高糖环境中的变化对心肌细胞凋亡机制的研究[J].心血管病学进展,2022,(10):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
 CAO XingdanCHEN ZiyiSONG XiaogangZHANG YuxiuCHEN MinTANG JichaoLI PingpingCHEN YongqingJING Zhe.Effect of High Glucose-Induced EMRE Expressions Changes on?yocardial Apoptosis[J].Advances in Cardiovascular Diseases,2022,(1):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
[9]林佳音 王莉莉 于小晴.胰高血糖素样肽-1受体激动剂对糖尿病心肌病的影响[J].心血管病学进展,2023,(11):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]
 LIN Jiayin,WANG Lili,YU Xiaoqing.Effect of Glucagon-Like Peptide-1 Receptor Agonist on Diabetes Cardiomyopathy[J].Advances in Cardiovascular Diseases,2023,(1):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]
[10]王一硕 罗皓文 王晨旭 孙路轩 阿如汗 张茵 常盼.线粒体动力学在糖尿病心肌病中的研究进展[J].心血管病学进展,2023,(12):1111.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.013]
 WANG Yishuo LUO Haowen WANG Chenxu SUN Luxuan AruhanZHANG Yin CHANG Pan.Mitochondrial Dynamics in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2023,(1):1111.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.013]

更新日期/Last Update: 2021-03-18