参考文献/References:
[1].Mozaffarian DBenjamin EJ,Go AS,et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association[J]. Circulation,2015,131(4):e29-e322.
[2].Gogg S,Smith U,Jansson PA. Increased MAPK activation and impaired insulin signaling in subcutaneous microvascular endothelial cells in type 2 diabetes:the role of endothelin-1[J]. Diabetes,2009,58(10):2238-2245.
[3].da Costa RM,Neves KB,Mestriner FL,et al. TNF-α induces vascular insulin resistance via positive modulation of PTEN and decreased Akt/eNOS/NO signaling in high fat diet-fed mice[J]. Cardiovasc Diabetol,2016,15(1):119-119.
[4].Liu F,Song R,Feng Y,et al. Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor α[J]. Circulation,2015,131(9):795-804.
[5].Steinbusch LK,Schwenk RW,Ouwens DM,et al. Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes[J]. Cell Mol Life Sci,2011,68(15):2525-2538.
[6].Glatz JFC,Luiken JJFP. Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization[J]. J Lipid Res,2018,59(7):1084-1093.
[7].Mandavia CH,Aroor AR,DeMarco VG,et al. Molecular and metabolic mechanisms of cardiac dysfunction in diabetes[J]. Life Sci,2013,92(11):601-608.
[8].Faria A,Persaud SJ. Cardiac oxidative stress in diabetes: mechanisms and therapeutic potential[J]. Pharmacol Ther,2017,172:50-62.
[9].Donath MY,Shoelson SE. Type 2 diabetes as an inflammatory disease[J]. Nat Rev Immunol,2011,11(2):98-107.
[10].Li H,Shi Y,Wang X,et al. Piceatannol alleviates inflammation and oxidative stress via modulation of the Nrf2/HO-1 and NF-κB pathways in diabetic cardiomyopathy[J]. Chem Biol Interact,2019,310:108754.
[11].Echem C,Bomfim GF,Ceravolo GS,et al. Anti-toll like receptor 4 (TLR4) therapy diminishes cardiac remodeling regardless of changes in blood pressure in spontaneously hypertensive rats (SHR) [J]. Int J Cardiol,2015,187:243-245.
[12].Zhang Y,Wang JH,Zhang YY,et al. Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFβ1 and miR-29 pathways[J]. Sci Rep,2016,6:23010.
[13].Duerrschmid C,Crawford JR,Reineke E,et al. TNF receptor 1 signaling is critically involved in mediating angiotensin-II-induced cardiac fibrosis[J]. J Mol Cell Cardiol,2013,57:59-67.
[14].Bidasee KR,Zhang Y,Shao CH,et al. Diabetes increases formation of advanced glycation end products on Sarco (endo) plasmic reticulum Ca2+-ATPase[J]. Diabetes,2004,53(2):463-473.
[15].Cheng YS,Dai DZ,Dai Y,et al. Exogenous hydrogen sulphide ameliorates diabetic cardiomyopathy in rats by reversing disordered calcium-handling system in sarcoplasmic reticulum[J]. J Pharm Pharmacol,2016,68(3):379-388.
[16].Tabassum A,Mahboob T. Role of peroxisome proliferator-activated receptor-gamma activation on visfatin,advanced glycation end products,and renal oxidative stress in obesity-induced type 2 diabetes mellitus[J]. Hum Exp Toxicol,2018,37(11):1187-1198.
[17].Pei Z,Deng Q,Babcock SA,et al. Inhibition of advanced glycation endproduct(AGE) rescues against streptozotocin-induced diabetic cardiomyopathy: role of autophagy and ER stress[J]. Toxicol Lett,2018,284:10-20.
[18].Zhou Y,Wu W. The sodium-glucose co-transporter 2 inhibitor,empagliflozin,protects against diabetic cardiomyopathy by inhibition of the endoplasmic reticulum stress pathway[J]. Cell Physiol Biochem,2017,41(6):2503-2512.
[19].Yue Y,Meng K,Pu Y,et al. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy[J]. Diabetes Res Clin Pract,2017,133:124-130.
[20].Yan XL,Wang YY,Yu ZF,et al. Peroxisome proliferator-activated receptor-gamma activation attenuates diabetic cardiomyopathy via regulation of the TGF-β/ERK pathway and epithelial-to-mesenchymal transition[J]. Life Sci,2018,213:269-278.
[21].Li G,Xing W,Zhang M,et al. Antifibrotic cardioprotection of berberine via downregulating myocardial IGF-1 receptor-regulated MMP-2/MMP-9 expression in diabetic rats[J]. Am J Physiol Heart Circ Physiol,2018,315(4):H802-H813.
[22].Widyantoro B,Emoto N,Nakayama K,et al. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic heart through stimulation of endothelial to mesenchymal transition[J]. Circulation,2010,121(22):2407-2418.
[23].Sharma V,Dogra N,Saikia UN,et al. Transcriptional regulation of endothelial-to-mesenchymal transition in cardiac fibrosis: role of myocardin-related transcription factor A and activating transcription factor 3[J]. Can J Physiol Pharmacol,2017,95(10):1263-1270.
[24].Nemes A,Forster T,Lengyel C,et al. Reduced aortic distensibility and coronary flow velocity reserve in diabetes mellitus patients with a negative coronary angiogram[J]. Can J Cardiol,2007,23(6):445-450.
[25].Catrina SB. Impaired hypoxia-inducible factor(HIF) regulation by hyperglycemia[J]. J Mol Med,2014,92(10):1025-1034.
[26].Li Z,Abdullah CS,Jin ZQ. Inhibition of PKC-θ preserves cardiac function and reduces fibrosis in streptozotocin-induced diabetic cardiomyopathy[J]. Br J Pharmacol,2014,171(11):2913-2924.
[27].Jia G,Hill MA,Sowers JR. Diabetic cardiomyopathy:an update of mechanisms contributing to this clinical entity[J]. Circ Res,2018,122(4):624-638.
[28].王振亚江洪. 自主神经再平衡与缺血性室性心律失常[J]. 心血管病学进展2019,40(2):268-272.
[29].Mialet-Perez J,Vindis C. Autophagy in health and disease: focus on the cardiovascular system[J]. Essays Biochem,2017,61(6):721-732.
[30].Delbridge LMD,Mellor KM,Taylor DJ,et al. Myocardial stress and autophagy: mechanisms and potential therapies[J]. Nat Rev Cardiol,2017,14(7):412-425.
[31].Kobayashi S,Liang Q. Autophagy and mitophagy in diabetic cardiomyopathy[J]. Biochim Biophys Acta,2015,1852(2):252-261.
[32].Westermeier F,Riquelme JA,Pavez M,et al. New molecular insights of insulin in diabetic cardiomyopathy[J]. Front Physiol,2016,7:125-125.
[33].Huang-Doran I,Zhang CY,Vidal-Puig A. Extracellular vesicles:novel mediators of cell communication in metabolic disease[J]. Trends Endocrinol Metab,2017,28(1):3-18.
[34].Wang X,Gu H,Huang W,et al. Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice[J]. Diabetes,2016,65(10):3111-3128.
[35].Asrih M,Steffens S. Emerging role of epigenetics and miRNA in diabetic cardiomyopathy[J]. Cardiovasc Pathol,2013,22(2):117-125.
相似文献/References:
[1]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes
of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(2):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[2]杨沫,姜文锡.线粒体功能异常在糖尿病心肌病发病机制中的作用[J].心血管病学进展,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
YANG Mo,JIANG Wenxi.Mitochondrial Dysfunction of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(2):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
[3]朱月红,戴启明.糖尿病心肌病的内质网病变机制及干预[J].心血管病学进展,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
ZHU Yuehong,DAI Qiming.Advance of Mechanism and Intervention of Endoplasmic Reticulum in
Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(2):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
[4]陈炜,许贞蓉.表观遗传学与代谢性心血管疾病的研究进展[J].心血管病学进展,2019,(6):902.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.016]
CHEN Wei,XU Zhenrong.Epigenetics and Cardiometabolic Disease[J].Advances in Cardiovascular Diseases,2019,(2):902.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.016]
[5]占小锋 张长磊 李刚.β肾上腺素受体阻滞剂对甘油三酯代谢的影响及其作用机制的阐述[J].心血管病学进展,2019,(9):1298.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.029]
ZHAN Xiaofeng,ZHANG Changlei,LI Gang.Effect of -adrenergic Receptor Blockers on Triglyceride Metabolism and Mechanism[J].Advances in Cardiovascular Diseases,2019,(2):1298.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.029]
[6]李莎 熊峰.胰岛素抵抗与心血管疾病研究进展[J].心血管病学进展,2019,(9):1307.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.032]
Li ShaXiong Feng.Insulin Resistance and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(2):1307.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.032]
[7]任蕾 夏芳芳 戴红艳.血管生成素样蛋白6在心血管病方面的研究进展[J].心血管病学进展,2020,(4):388.[doi:10.16806/j.cnki.issn.1004-3934.20.04.015]
REN Lei,XIA FangFang,DAI HongYan.Relationship Between ANGPTL6 and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(2):388.[doi:10.16806/j.cnki.issn.1004-3934.20.04.015]
[8]杨晓倩 秦莉 张艺文 童兰 汪汉.糖皮质激素与心血管疾病[J].心血管病学进展,2020,(4):404.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.019]
YANG Xiaoqian,QIN Li,ZHANG Yiwen,et al.Glucocorticoid and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(2):404.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.019]
[9]樊德慧 金娟 韩宇博 田苗 刘莉.利钠肽与代谢综合征的研究进展[J].心血管病学进展,2020,(10):1074.[doi:10.16806/j.cnki.issn.1004-3934.20.10.018]
FAN Dehui,JIN Juan,HAN Yubo,et al.Research Progress of Natriuretic Peptide and Metabolic Syndrome[J].Advances in Cardiovascular Diseases,2020,(2):1074.[doi:10.16806/j.cnki.issn.1004-3934.20.10.018]
[10]廖丽萍 周跟东 张晓红.血清甘油三酯葡萄糖乘积指数与代谢性疾病的研究进展[J].心血管病学进展,2020,(11):1189.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]