[1]呼瑞 刘富强 王军奎.肠道菌群代谢产物与血管内皮功能的研究进展[J].心血管病学进展,2024,(2):151.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.012]
 HU RuiLIU FuqiangWANG Junkui.Metabolites of Intestinal Flora and Vascular Endothelial Function[J].Advances in Cardiovascular Diseases,2024,(2):151.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.012]
点击复制

肠道菌群代谢产物与血管内皮功能的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年2期
页码:
151
栏目:
综述
出版日期:
2024-02-25

文章信息/Info

Title:
Metabolites of Intestinal Flora and Vascular Endothelial Function
作者:
呼瑞1 刘富强2 王军奎 2
(1.西安医学院,陕西 西安 710021;2.陕西省人民医院心血管内科,陕西 西安 710068)
Author(s):
HU Rui1LIU Fuqiang2WANG Junkui2
(1.Xi’an Medical University,Xian 710021,Shaanxi,China;2.Department of Cardiology,Shaanxi Provincial Peoples Hospital,Xian 710068,Shaanxi,China)
关键词:
血管内皮功能肠道菌群代谢产物
Keywords:
Vascular endothelial functionIntestinal floraMetabolite
DOI:
10.16806/j.cnki.issn.1004-3934.2024.02.012
摘要:
血管内皮功能对维持心血管系统稳态至关重要,其功能障碍是心血管疾病的重要原因。近年来,许多研究表明肠道菌群参与了血管内皮功能的改变,可能通过直接影响肠道菌群或间接影响肠道菌群代谢产物,如短链脂肪酸、次级胆汁酸、吲哚-3-甲醛、三甲胺-N-氧化物、苯乙酰谷氨酰胺、脂多糖、尿毒症毒素等对血管内皮功能产生影响。现综述近年来发现的肠道菌群代谢产物,为探索肠道菌群对血管内皮功能的影响提供理论基础和新思路。
Abstract:
Vascular endothelial function is critical for maintaining homeostasis of the cardiovascular system,and its dysfunction is an important cause of cardiovascular disease. In recent years,many studies have shown that intestinal flora are involved in the alteration of vascular endothelial function,which may affect vascular endothelial function by directly influencing intestinal flora or indirectly influencing intestinal flora metabolites,such as short-chain fatty acids,secondary bile acids,indole-3-carboxaldehyde,trimethylamine-N-oxides,phenylacetylglutamine,lipopolysaccharides,and uremic toxins. The metabolites of intestinal flora discovered in recent years are reviewed to provide a theoretical basis and new ideas for exploring the effects of intestinal flora on vascular endothelial function

参考文献/References:

[1] Xu S,Ilyas I,Little PJ,et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond:from mechanism to pharmacotherapies[J]. Pharmacol Rev,2021,73(3):924-967.
[2] Battson ML,Lee DM,Jarrell DK,et al. Suppression of gut dysbiosis reverses Western diet-induced vascular dysfunction[J]. Am J Physiol Endocrinol Metab,2018,314(5):E468-E477.
[3] Zhang Q,Liu J,Duan H,et al. Activation of Nrf2/HO-1 signaling:an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress[J]. J Adv Res,2021,34:43-63.
[4] Querio G,Antoniotti S,Geddo F,et al. Modulation of endothelial function by TMAO,a gut microbiota-derived metabolite[J]. Int J Mol Sci,2023,24(6):5806.
[5] Amedei A,Morbidelli L. Circulating metabolites originating from gut microbiota control endothelial cell function[J]. Molecules,2019,24(21):3992.
[6] Vanhoutte PM,Shimokawa H,Feletou M,et al. Endothelial dysfunction and vascular disease—A 30th anniversary update[J]. Acta Physiol (Oxf),2017,219(1):22-96.
[7] Tenopoulou M,Doulias P-T. Endothelial nitric oxide synthase-derived nitric oxide in the regulation of metabolism[J]. F1000Res,2020,9:F1000 Faculty Rev-1190.
[8] Barko PC,Mcmichael MA,Swanson KS,et al. The gastrointestinal microbiome:a review[J]. J Vet Intern Med,2018,32(1):9-25.
[9] Eckburg PB,Bik EM,Bernstein CN,et al. Diversity of the human intestinal microbial flora[J]. Science,2005,308(5728):1635-1638.
[10] Maiuolo J,Carresi C,Gliozzi M,et al. The contribution of gut microbiota and endothelial dysfunction in the development of arterial hypertension in animal models and in humans[J]. Int J Mol Sci,2022,23(7):3698.
[11] Cortés-Martín A,Iglesias-Aguirre CE,Meoro A,et al. There is no distinctive gut microbiota signature in the metabolic syndrome:contribution of cardiovascular disease risk factors and associated medication[J]. Microorganisms,2020,8(3):416.
[12] Kazemian N,Mahmoudi M,Halperin F,et al. Gut microbiota and cardiovascular disease:opportunities and challenges[J]. Microbiome,2020,8(1):36.
[13] Jin M,Qian Z,Yin J,et al. The role of intestinal microbiota in cardiovascular disease[J]. J Cell Mol Med,2019,23(4):2343-2350.
[14] Cui L,Zhao T,Hu H,et al. Association study of gut flora in coronary heart disease through high-throughput sequencing[J]. Biomed Res Int,2017,2017:3796359.
[15] Chen YH,Yuan W,Meng LK,et al. The role and mechanism of gut microbiota in pulmonary arterial hypertension[J]. Nutrients,2022,14(20):4278.
[16] Tsutsumi R,Yamasaki Y,Takeo J,et al. Long-chain monounsaturated fatty acids improve endothelial function with altering microbial flora[J]. Transl Res,2021,237:16-30.
[17] Malik M,Suboc TM,Tyagi S,et al. Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease[J]. Circ Res,2018,123(9):1091-1102.
[18] Hemmati M,Kashanipoor S,Mazaheri P,et al. Importance of gut microbiota metabolites in the development of cardiovascular diseases (CVD)[J]. Life Sci,2023,329:121947.
[19] Li M,van Esch BCAM,Wagenaar GTM,et al. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells[J]. Eur J Pharmacol,2018,831:52-59.
[20] Brown JM,Hazen SL. Microbial modulation of cardiovascular disease[J]. Nat Rev Microbiol,2018,16(3):171-181.
[21] Gou X,Qin L,Wu D,et al. Research progress of Takeda G protein-coupled receptor 5 in metabolic syndrome[J]. Molecules,2023,28(15):5870.
[22] Guizoni DM,Vettorazzi JF,Carneiro EM,et al. Modulation of endothelium-derived nitric oxide production and activity by taurine and taurine-conjugated bile acids[J]. Nitric Oxide,2020,94:48-53.
[23] Walsh LK,Restaino RM,Neuringer M,et al. Administration of tauroursodeoxycholic acid prevents endothelial dysfunction caused by an oral glucose load[J]. Clin Sci (Lond),2016,130(21):1881-1888.
[24] Paeslack N,Mimmler M,Becker S,et al. Microbiota-derived tryptophan metabolites in vascular inflammation and cardiovascular disease[J]. Amino Acids,2022,54(10):1339-1356.
[25] Lu Y,Yang W,Qi Z,et al. Gut microbe-derived metabolite indole-3-carboxaldehyde alleviates atherosclerosis[J]. Signal Transduct Target Ther,2023,8(1):378.
[26] Scott SA,Fu J,Chang PV,et al. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor[J]. Proc Natl Acad Sci U S A,2020,117(32):19376-19387.
[27] Nguyen C,Edgley AJ,Kelly DJ,et al. Aryl hydrocarbon receptor inhibition restores indoxyl sulfate-mediated endothelial dysfunction in rat aortic rings[J]. Toxins (Basel),2022,14(2):100.
[28] Liu Y,Dai M. Trimethylamine N-oxide generated by the gut microbiota is associated with vascular inflammation:new insights into atherosclerosis[J]. Mediators Inflamm,2020,2020:4634172.
[29] Brunt VE,Gioscia-Ryan RA,Casso AG,et al. Trimethylamine-N-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans[J]. Hypertension,2020,76(1):101-112.
[30] Nemet I,Saha PP,Gupta N,et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors[J]. Cell,2020,180(5):862-877.
[31] Chistiakov DA,Bobryshev YV,Kozarov E,et al. Role of gut microbiota in the modulation of atherosclerosis-associated immune response[J]. Front Microbiol,2015,6:671.
[32] Zhao J,Liu Z,Chang Z. Lipopolysaccharide induces vascular endothelial cell pyroptosis via the SP1/RCN2/ROS signaling pathway[J]. Eur J Cell Biol,2021,100(4):151164.
[33] Matsumoto T,Kojima M,Takayanagi K,et al. Role of S-equol,indoxyl sulfate,and trimethylamine N-oxide on vascular function[J]. Am J Hypertens,2020,33(9):793-803.
[34] Kumar T,Dutta RR,Velagala VR,et al. Analyzing the complicated connection between intestinal microbiota and cardiovascular diseases[J]. Cureus,2022,14(8):e28165.
[35] Omori K,Katakami N,Arakawa S,et al. Identification of plasma inositol and indoxyl sulfate as novel biomarker candidates for atherosclerosis in patients with type 2 diabetes—Findings from metabolome analysis using GC/MS[J]. J Atheroscler Thromb, 2020 , 27(10) : 1053-1067.

相似文献/References:

[1]杨娟,综述,王佑华,等.肠道菌群与血管内炎症[J].心血管病学进展,2016,(3):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
 YANG Juan,WANG Youhua,YUAN Suyun.Relationship Between Gut Microbiota and Vascular Inflammation[J].Advances in Cardiovascular Diseases,2016,(2):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
[2]刘欢,刘润冬,综述,等.血管内皮功能的评价及其临床价值[J].心血管病学进展,2016,(4):426.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.026]
 LIU Huan,LIU Rundong,WANG Hongyu.Evaluation of Vascular Endothelial Function and Its Clinical Value[J].Advances in Cardiovascular Diseases,2016,(2):426.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.026]
[3]张琪 宋晓鹏 任茂佳 吴广 赵兴胜.氧化三甲胺与心血管疾病的研究新进展[J].心血管病学进展,2020,(1):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
 ZHANG Qi,SONG Xiaopeng,REN Maojia,et al.Trimethylamine Oxide and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(2):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
[4]李靖,任彭,努尔比耶·买买提,等.三甲胺-N-氧化物与冠心病和心力衰竭的研究进展[J].心血管病学进展,2020,(3):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
 LI Jing,REN Peng,Nuerbiye·Maimaiti,et al.Trimethylamine-N-oxide and Coronary Heart Disease and Heart Failure[J].Advances in Cardiovascular Diseases,2020,(2):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
[5]王猛 江洪.肠道菌群及其代谢产物与心房颤动的研究进展[J].心血管病学进展,2022,(3):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 WANG Meng,JIANG Hong.Gut Microbiota an d Its Metabolites in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(2):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[6].肠-脑轴与心血管疾病的研究进展[J].心血管病学进展,2022,(7):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
 TAN Wuping,W ANG Meng,ZHOU Xiaoya.Gut-Brain Axis and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(2):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[7]刘杏利 高中山 段豪亮 赵奕 马玉兰.肠道菌群及其代谢物与心律失常关系的研究进展[J].心血管病学进展,2022,(11):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]
 LIU Xingli,GAO Zhongshan,DUAN Haoliang,et al.The Relationship Between Intestinal Flora and Its Metabolites and Arrhythmia[J].Advances in Cardiovascular Diseases,2022,(2):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]
[8]张嘉原 张莉.果糖代谢与血脂异常的研究进展[J].心血管病学进展,2022,(12):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
 ZHANG Jiayuan ZHANG Li.Fructose Metabolism and DyslipidemiaA Systematic Review[J].Advances in Cardiovascular Diseases,2022,(2):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
[9]卢燕 刘亚萍 罗强 张全波 汪汉.肠道菌群及其代谢物与痛风[J].心血管病学进展,2023,(2):177.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.018]
 LU Yan,LIU Yaping,LUO Qiang,et al.Intestinal Flora and Its Metabolites and Gout[J].Advances in Cardiovascular Diseases,2023,(2):177.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.018]
[10]蒋振江 刘富强 王军奎.肠道菌群与肥胖的关系研究进展[J].心血管病学进展,2023,(3):265.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.017]
 JIANG Zhenjiang,LIU Fuqiang,WANG Junkui.The Relationship Between Gut Microbiota and Obesity[J].Advances in Cardiovascular Diseases,2023,(2):265.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.017]

更新日期/Last Update: 2024-03-29