[1]庞泽堃 李剑明.放射性核素分子显像在心肌损伤中的研究进展[J].心血管病学进展,2023,(1):25-29.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.007]
 PANG Zekun,LI Jianming.Radionuclide Molecular Imaging in Myocardial Injury[J].Advances in Cardiovascular Diseases,2023,(1):25-29.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.007]
点击复制

放射性核素分子显像在心肌损伤中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年1期
页码:
25-29
栏目:
主题综述
出版日期:
2023-01-25

文章信息/Info

Title:
Radionuclide Molecular Imaging in Myocardial Injury
作者:
庞泽堃 李剑明
(泰达国际心血管病医院核医学科,天津 300457)
Author(s):
PANG ZekunLI Jianming
(Department of Nuclear Medicine,TEDA International Cardiovascular Hospital,Tianjin 300457,China)
关键词:
心肌损伤放射性核素诊断
Keywords:
Myocardial injuryRadionuclideDiagnosis
DOI:
10.16806/j.cnki.issn.1004-3934.2023.01.007
摘要:
心肌损伤是心血管相关疾病的重要致病因素之一,导致心肌损伤的原因多样且机制复杂不明。早期和及时地探测心肌损伤并进行相应的干预治疗有助于中断损伤,延缓并逆转心肌损伤的程度,已成为近年来研究的热点。放射性核素分子显像能从活体上示踪心肌损伤过程的分子活动变化而被寄予厚望。因此,现从目前发现的有望用于心肌损伤诊断的新型放射性核素分子探针角度,对其基本原理、相关研究进展与潜在应用价值做一综述。
Abstract:
Myocardial injury is one of the important causative factors of cardiovascular-related diseases. The causes of myocardial injury are diverse and the mechanisms are complex and unknown. Early and timely detection of myocardial injury and corresponding interventions can help to interrupt,delay and reverse the extent of myocardial injury,which has become a hot topic of research in recent years. The ability of radionuclide molecular imaging to trace the molecular activity of myocardial injury process in vivo has been highly anticipated. Therefore,this article is intended to review the basic principles,research progress and potential applications of the new radionuclide molecular probes that have been discovered for the diagnosis of myocardial injury.

参考文献/References:

[1] Zamorano JL,Lancellotti P,Rodriguez Mu?oz D,et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines:The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology(ESC)[J]. Eur Heart J,2016,37(36):2768-2801.

[2] Awadalla M,Hassan MZO,Alvi RM,et al. Advanced imaging modalities to detect cardiotoxicity[J]. Curr Probl Cancer,2018,42(4):386-396.

[3] Reed GW,Rossi JE,Cannon CP. Acute myocardial infarction[J]. Lancet,2017,389(10065):197-210.

[4] Seemann I,Gabriels K,Visser NL,et al. Irradiation induced modest changes in murine cardiac function despite progressive structural damage to the myocardium and microvasculature[J]. Radiother Oncol,2012,103(2):143-150.

[5] Houson HA,Nkepang GN,Hedrick AF,et al. Imaging of isoproterenol-induced myocardial injury with 18F labeled fluoroglucaric acid in a rat model[J]. Nucl Med Biol,2018,59:9-15.

[6] Ricchelli F,Sileikyt? J,Bernardi P. Shedding light on the mitochondrial permeability transition[J]. Biochim Biophys Acta,2011,1807(5):482-490.

[7] Janczar K,Su Z,Raccagni I,et al. The 18-kDa mitochondrial translocator protein in gliomas:from the bench to bedside[J]. Biochem Soc Trans,2015,43(4):579-585.

[8] Luo R,Wang L,Ye F,et al. [18F]FEDAC translocator protein positron emission tomography computed tomography for early detection of mitochondrial dysfunction secondary to myocardial ischemia[J]. Ann Nucl Med,2021,35(8):927-936.

[9] Sugamura K,Keaney JF Jr. Reactive oxygen species in cardiovascular disease[J]. Free Radic Biol Med,2011,51(5):978-992.

[10] Frijhoff J,Winyard PG,Zarkovic N,et al. Clinical relevance of biomarkers of oxidative stress[J]. Antioxid Redox Signal,2015,23(14):1144-1170.

[11] Wu J,Boutagy NE,Cai Z,et al. Feasibility study of PET dynamic imaging of [18F]DHMT for quantification of reactive oxygen species in the myocardium of large animals[J]. J Nucl Cardiol,2022,29(1):216-225.

[12] Teicher BA,Fricker SP. CXCL12(SDF-1)/CXCR4 pathway in cancer[J]. Clin Cancer Res,2010,16(11):2927-2931.

[13] Kircher M,Tran-Gia J,Kemmer L,et al. Imaging inflammation in atherosclerosis with CXCR4-directed 68Ga-pentixafor PET/CT:correlation with 18F-FDG PET/CT[J]. J Nucl Med,2020,61(5):751-756.

[14] Derlin T,Sedding DG,Dutzmann J,et al. Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [68Ga]pentixafor PET/CT[J]. Eur J Nucl Med Mol Imaging,2018,45(11):1934-1944.

[15] Velasco C,Mateo J,Santos A,et al. Assessment of regional pulmonary blood flow using 68GaDOTA PET[J]. EJNMMI Res,2017,7(1):7.

[16] Boughdad S,Latifyan S,Fenwick C,et al. 68Ga-DOTATOC PET/CT to detect immune checkpoint inhibitor-related myocarditis[J]. J Immunother Cancer,2021,9(10):e003594.

[17] Ivey MJ,Tallquist MD. Defining the cardiac fibroblast[J]. Circ J,2016,80(11):2269-2276.

[18] Humeres C,Frangogiannis NG. Fibroblasts in the infarcted,remodeling,and failing heart[J]. JACC Basic Trans Sci,2019,4(3):449-467.

[19] Lindner T,Loktev A,Altmann A,et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein [J]. J Nucl Med,2018,59(9):1415-1422.

[20] Kessler L,Kupusovic J,Ferdinandus J,et al. Visualization of fibroblast activation after myocardial infarction using 68Ga-FAPI PET[J]. Clin Nucl Med,2021,46(10):807-813.

[21] Gr?nman M,Tarkia M,Kiviniemi T,et al. Imaging of αvβ3 integrin expression in experimental myocardial ischemia with [68Ga]NODAGA-RGD positron emission tomography[J]. J Transl Med,2017,15(1):144.

[22] Bentsen S,Clemmensen A,Loft M,et al. [68Ga]Ga-NODAGA-E[(cRGDyK)]2 angiogenesis PET/MR in a porcine model of chronic myocardial infarction[J]. Diagnostics(Basel),2021,11(10):1807.

[23] Larson MC,Woodliff JE,Hillery CA,et al. Phosphatidylethanolamine is externalized at the surface of microparticles[J]. Biochim Biophys Acta,2012,1821(12):1501-1507.

[24] Zhao M,Li Z. A single-step kit formulation for the 99mTc-labeling of HYNICDuramycin[J]. Nucl Med Biol,2012,39(7):1006-1011.

[25] Mullah SH,Saha BK,Abutarboush R,et al. Perfluorocarbon NVX-108 increased cerebral oxygen tension after traumatic brain injury in rats[J]. Brain Res,2016,1634:132-139.

[26] Liu Z,Barber C,Gupta A,et al. Imaging assessment of cardioprotection mediated by a dodecafluoropentane oxygen-carrier administered during myocardial infarction[J]. Nucl Med Biol,2019,70:67-77.

[27] Wysoczynski M,Solanki M,Borkowska S,et al. Complement component 3 is necessary to preserve myocardium and myocardial function in chronic myocardial infarction[J]. Stem Cells,2014,32(9):2502-2515.

[28] Andreadou I,Iliodromitis EK,Lazou A,et al. Effect of hypercholesterolaemia on myocardial function,ischaemia-reperfusion injury and cardioprotection by preconditioning,postconditioning and remote conditioning[J]. Br J Pharmacol,2017,174(12):1555-1569.

[29] Sharif-Paghaleh E,Yap ML,Puhl SL,et al. Non-invasive whole-body detection of complement activation using radionuclide imaging in a mouse model of myocardial ischaemia-reperfusion injury[J]. Sci Rep,2017,7(1):16090.

[30] Thorn SL,Barlow SC,Feher A,et al. Application of hybrid matrix metalloproteinase-targeted and dynamic 201Tl single-photon emission computed tomography/computed tomography imaging for evaluation of early post-myocardial infarction remodeling[J]. Circ Cardiovasc Imaging,2019,12(11):e009055.

[31] Jung JJ,Razavian M,Challa AA,et al. Multimodality and molecular imaging of matrix metalloproteinase activation in calcific aortic valve disease[J]. J Nucl Med,2015,56(6):933-938.

相似文献/References:

[1]冯泽豪 姜萌 卜军.心脏磁共振评价化疗所致心肌损伤的研究进展[J].心血管病学进展,2019,(5):667.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.003]
 FENG Zehao,JIANG Meng,PU Jun.Cardiovascular Magnetic Resonance for Detection of Myocardial Impairments Caused by Chemotherapy[J].Advances in Cardiovascular Diseases,2019,(1):667.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.003]
[2]李凤鹏 张军.2型心肌梗死和心肌损伤的研究进展[J].心血管病学进展,2019,(9):1275.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.023]
 LI Fengpeng,ZHANG Jun.Type 2 Myocardial Infarction and Myocardial Injury[J].Advances in Cardiovascular Diseases,2019,(1):1275.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.023]
[3]布热比古力·阿布力米提 付真彦.乳腺癌药物治疗与心肌损伤[J].心血管病学进展,2020,(8):802.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.005]
 Burebiguli·abulimitiFU Zhenyan.Drug Therapy of Breast Cancer and Assosiated Myocardial Damage[J].Advances in Cardiovascular Diseases,2020,(1):802.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.005]
[4]陈涛 张大勇 袁明 魏天龙.急性ST段抬高型心肌梗死患者血miRNA-499a与心肌损伤标志物的相关性分析[J].心血管病学进展,2020,(9):994.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.025]
 CHEN Tao,ZHANG Dayong,YUAN Ming,et al.Correlation Between Serum miRNA-499a and Myocardial Injury Markers in Patients with Acute ST-Segment Elevation Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(1):994.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.025]
[5]汪汉,刘汉雄,蔡琳.2019冠状病毒病的心血管表现[J].心血管病学进展,2020,(11):1152.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
 WANG Han,LIU Hanxiong,CAI Lin.Cardiovascular Profiles in Corona V irus Disease 2019[J].Advances in Cardiovascular Diseases,2020,(1):1152.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
[6]田振宇 刘燕娥 朱丹 曹宝山 崔鸣.肿瘤化疗心肌损伤机制及其与肠道菌群相关性的研究进展[J].心血管病学进展,2023,(6):496.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.004]
 TIAN Zhenyu,LIU Yane,ZHU Dan,et al.Progress of the Mechanism of Myocardial Injury and its Correlation between Tumor Chemotherapy and Intestinal Microbiota[J].Advances in Cardiovascular Diseases,2023,(1):496.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.004]
[7]袁敏?韩轩茂?蔺雪峰.纳米氧化铈抗氧化保护心肌细胞的研究进展[J].心血管病学进展,2023,(7):654.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.018]
 YUAN Min,HAN Xuanmao,LIN Xuefeng.Cerium Oxide Nanoparticles in Antioxidant Protection of M yocardial?ells?/html>[J].Advances in Cardiovascular Diseases,2023,(1):654.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.018]
[8]冉黔松 周厚荣.长链非编码RNA调节自噬在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2024,(3):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]
 RAN Qiansong ZHOU Hourong.Long Non-Coding RNA Regulating Autophagy in Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2024,(1):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]

更新日期/Last Update: 2023-03-10