[1]王雪梅 王怡婷 曹莹 汪洁英 李婧 门可.线粒体功能调控动脉粥样硬化的研究进展[J].心血管病学进展,2022,(11):1016.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.012]
 WANG Xuemei,WANG Yiting,CAO Ying,et al.Atherosclerosis Mediated by Mitochondrial Function[J].Advances in Cardiovascular Diseases,2022,(11):1016.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.012]
点击复制

线粒体功能调控动脉粥样硬化的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年11期
页码:
1016
栏目:
综述
出版日期:
2022-11-25

文章信息/Info

Title:
Atherosclerosis Mediated by Mitochondrial Function
作者:
王雪梅12 王怡婷1 曹莹1 汪洁英1 李婧1 门可3
(1.西安医学院公共卫生学院,陕西 西安 710000;2.陕西省缺血性心血管疾病重点实验室 西安医学院基础与转化医学研究所,陕西 西安 710000;3.陕西省公共安全医学防控研究中心,陕西 西安 710000)
Author(s):
WANG Xuemei12 WANG Yiting 1 CAO Ying1 WANG Jieying1 LI Jing 1 MEN Ke3
(1.Department of Public Health,Xi’an Medical University,Xi’an 710000,Shaanxi,China; 2.Key Laboratory of Ischemic Cardiovascular Disease in Shaanxi Institute of Basic and Translational Medicine of Xi’an Medical UniversityXi’an 710000,Shaanxi,China; 3.Research Center for Medical Prevention and Control of Public Safety of Shaanxi Province,Xi’an 710000,Shaanxi,China)
关键词:
动脉粥样硬化线粒体功能过氧化物酶体增殖物激活受体γ协同激活因子靶向治疗
Keywords:
AtherosclerosisMitochondrial function Peroxisome proliferator-activated receptor- coactivator-1Targeted therapy
DOI:
10.16806/j.cnki.issn.1004-3934.2022.11.012
摘要:
血管内皮细胞损伤、巨噬细胞吞噬脂质泡沫化、平滑肌细胞的增殖和迁移是动脉粥样硬化的主要病理特征。线粒体是细胞的“ATP工厂”,高脂应激造成线粒体氧化磷酸化效率降低,ATP合成受阻,活性氧生成增加,脂质蓄积形成脂质核心。重要事件包括过氧化物酶体增殖物激活受体α和过氧化物酶体增殖物激活受体γ协同激活因子-1α表达降低,线粒体DNA生物合成减少,线粒体膜电位降低,ATP含量下降,活性氧累积。现探讨动脉粥样硬化病理发生过程中的线粒体功能与临床干预治疗,为动脉粥样硬化的靶向干预治疗提供思路。
Abstract:
The pathogenesis of atherosclerosis involves the injury of vascular endothelial cells,phagocytosis of macrophages to foam cells,and proliferation and migration of smooth muscle cells. Mitochondria are the “ATP factory” of cells. Hyperlipidemic stress reduces the oxidative phosphorylation efficiency of mitochondria,inhibits ATP synthesis,increases the production of reactive oxygen species,and accumulates lipids to form lipid cores. Important events include PPAR and PGC-1αexpression decreased, mitochondrial DNA biosynthesis decreased,mitochondrial membrane potential decreased,ATP content decreased,and reactive oxygen species accumulated. This paper aims to explore the mitochondrial function and clinical intervention in the pathogenesis of atherosclerosis,and provide ideas for targeted intervention therapy of atherosclerosis

参考文献/References:

[1] Doran AC . Inflammation resolution:implications for atherosclerosis[J]. Circ Res,2022,130 (1):130-148.

[2] Nayor M,Brown KJ,Vasan RS. The molecular basis of predicting atherosclerotic cardiovascular disease risk[J]. Circ Res,2021,128 (2):287-303.

[3] O’Rourke SA,Neto NGB,Devilly E,et al. Cholesterol crystals drive metabolic reprogramming and M1 macrophage polarisation in primary human macrophages[J]. Atherosclerosis,2022,352:35-45.

[4] Castellani CA,Longchamps RJ,Sumpter JA,et al. Mitochondrial DNA copy number can influence mortality and cardiovascular disease via methylation of nuclear DNA CpGs[J]. Genome Med,2020,12 (1):84.

[5] Ashar FN,Zhang Y,Longchamps RJ,et al. Association of mitochondrial DNA copy number with cardiovascular disease[J]. JAMA Cardiol,2017,2 (11):1247-1255.

[6] He L,Zhang CL,Chen Q,et al. Endothelial shear stress signal transduction and atherogenesis:from mechanisms to therapeutics[J]. Pharmacol Ther,2022,235:108152.

[7] Fernández-Vizarra E,Callegari S,Garrabou G,et al. Editorial:mitochondrial OXPHOS system:emerging concepts and technologies and role in disease[J]. Front Cell Dev Biol,2022,10:924272.

[8] Xu S,Ilyas I,Little PJ,et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond:from mechanism to pharmacotherapies[J]. Pharmacol Rev,2021,73 (3):924-967.

[9] Lurette O,Guedouari H,Morris JL,et al. Mitochondrial matrix-localized Src kinase regulates mitochondrial morphology[J]. Cell Mol Life Sci,2022,79 (2):327.

[10] Tian X,Huang Y,Zhang X,et al. Salidroside attenuates myocardial ischemia/reperfusion injury via AMPK-induced suppression of endoplasmic reticulum stress and mitochondrial fission[J]. Toxicol Appl Pharmacol,2022,448:116093.

[11] Liu Y,Wang S,Zhang X,et al. The regulation and characterization of mitochondrial-derived methylmalonic acid in mitochondrial dysfunction and oxidative stress:from basic research to clinical practice[J]. Oxid Med Cell Longev,2022,2022:7043883.

[12] He L,Li Y,Zhang D,et al. Dapagliflozin improves endothelial cell dysfunction by regulating mitochondrial production via the SIRT1/PGC-1α pathway in obese mice[J]. Biochem Biophys Res Commun,2022,615:123-130.

[13] Tracy EP,Hughes W,Beare JE,et al. Aging-induced impairment of vascular function:mitochondrial redox contributions and physiological/clinical implications[J]. Antioxid Redox Signal,2021,35 (12):974-1015.

[14] Farshori NN,Saquib Q,Siddiqui MA,et al. Protective effects of Nigella sativa extract against H2O2-induced cell death through the inhibition of DNA damage and cell cycle arrest in human umbilical vein endothelial cells(HUVECs)[J]. J Appl Toxicol,2021,41 (5):820-831.

[15] Wang H,Sugimoto K,Lu H,et al. HDAC1-mediated deacetylation of HIF1α prevents atherosclerosis progression by promoting miR-224-3P-mediated inhibition of FOSL2[J]. Mol Ther Nucleic Acids,2021,23:577-591.

[16] Li X,Li R,You N,et al. Butyric acid ameliorates myocardial fibrosis by regulating M1/M2 polarization of macrophages and promoting recovery of mitochondrial function[J]. Front Nutr,2022,9:875473.

[17] Wang Y,Subramanian M,Yurdagul A J r,et al. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages[J]. Cell,2017,171 (2):331-345.e22.

[18] Karunakaran D,Thrush AB,Nguyen MA,et al. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-miR33 in atherosclerosis[J]. Circ Res,2015,117 (3):266-278.

[19] Tyrrell DJ,Blin MG,Song J,et al. Age-associated mitochondrial dysfunction accelerates atherogenesis[J]. Circ Res,2020,126 (3):298-314.

[20] Huynh DTN,Heo KS. Role of mitochondrial dynamics and mitophagy of vascular smooth muscle cell proliferation and migration in progression of atherosclerosis[J]. Arch Pharm Res,2021,44 (12):1051-1061.

[21] Chen NX,O’Neill KD,Dominguez JM 2nd,et al. Regulation of reactive oxygen species in the pathogenesis of matrix vesicles induced calcification of recipient vascular smooth muscle cells[J]. Vasc Med,2021,26 (6):585-594.

[22] Wei Y,Corbalán-Campos J,Gurung R,et al. Dicer in macrophages prevents atherosclerosis by promoting mitochondrial oxidative metabolism[J]. Circulation,2018,138 (18):2007-2020.

[23] Rodríguez C,Mu?oz M,Contreras C,et al. AMPK,metabolism,and vascular function[J]. FEBS J,2021,288 (12):3746-3771.

[24] Silva J,Spatz MH,Folk C,et al. Dihydromyricetin improves mitochondrial outcomes in the liver of alcohol-fed mice via the AMPK/Sirt-1/PGC-1α signaling axis[J]. Alcohol,2021,91:1-9.

[25] Das S,Chattopadhyay D,Chatterjee SK,et al. Increase in PPARγ inhibitory phosphorylation by Fetuin-A through the activation of Ras-MEK-ERK pathway causes insulin resistance[J]. Biochim Biophys Acta Mol Basis Dis,2021,1867 (4):166050.

[26] Amirazodi M,Mehrabi A,Rajizadeh MA,et al. The effects of combined resveratrol and high intensity interval training on the hippocampus in aged male rats:an investigation into some signaling pathways related to mitochondria[J]. Iran J Basic Med Sci,2022,25 (2):254-262.

[27] Montecino-Garrido H,Méndez D,Araya-Maturana R,et al. In vitro effect of mitochondria-targeted triphenylphosphonium-based compounds(honokiol,lonidamine,and atovaquone) on the platelet function and cytotoxic activity[J] . Front Pharmacol,2022,13:893873 .

[28] 陈航,胡琴丰,林丽,等. 线粒体移植在心肌缺血损伤治疗中的研究[J]. 自然杂志,2022,44(2):109-116.

[29] Zhou M,Yu Y,Luo Y,et al. Mitochondrial transplantation:a unique treatment strategy[J]. J Cardiovasc Pharmacol,2022,79 (6):759-768.

[30] Bravo-San Pedro JM,Kroemer G,Galluzzi L. Autophagy and mitophagy in cardiovascular disease[J]. Circ Res,2017,120 (11):1812-1824.

[31] Broome SC,Pham T,Braakhuis AJ,et al. MitoQ supplementation augments acute exercise-induced increases in muscle PGC1α mRNA and improves training-induced increases in peak power independent of mitochondrial content and function in untrained middle-aged men[J]. Redox Biol,2022,53:102341.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(11):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(11):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(11):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(11):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(11):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(11):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(11):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(11):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(11):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(11):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]

更新日期/Last Update: 2023-01-31