[1]董正 吴润达 姚康 葛均波.免疫细胞在动脉粥样硬化炎症进展中的双刃剑作用[J].心血管病学进展,2021,(1):26-29.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 DONG Zheng,WU Runda,YAO Kang,et al.Double-edged Sword Role of Immune Cells in Advance of Atherosclerotic Inflammation[J].Advances in Cardiovascular Diseases,2021,(1):26-29.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
点击复制

免疫细胞在动脉粥样硬化炎症进展中的双刃剑作用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年1期
页码:
26-29
栏目:
综述
出版日期:
2021-01-25

文章信息/Info

Title:
Double-edged Sword Role of Immune Cells in Advance of Atherosclerotic Inflammation
文章编号:
20200414
作者:
董正 吴润达 姚康 葛均波
(上海市心血管病研究所 复旦大学附属中山医院心内科,上海 200032)
Author(s):
DONG ZhengWU RundaYAO KangGE Junbo
(Department of Cardiology,Zhongshan Hospital,Fudan University,Shanghai Institute of Cardiovascular Diseases,Shanghai 200032,China)
关键词:
动脉粥样硬化炎症免疫炎症细胞抗炎治疗
Keywords:
AtherosclerosisImmunityInflammatory cellsAnti-inflammatory therapy
DOI:
10.16806/j.cnki.issn.1004-3934.2021.01.000
摘要:
炎症在动脉粥样硬化发展过程中起到十分重要的作用。动脉粥样硬化病理过程由动脉内皮损伤和血浆胆固醇水平异常引起,随后通过炎症反应招募各种免疫细胞进入动脉内膜参与斑块的形成与进展,这些细胞包括巨噬细胞、树突状细胞、平滑肌细胞、T细胞、B细胞和肥大细胞等。其中每一种免疫细胞又由促炎亚群和抗炎亚群共同组成,并产生相应的促炎因子与抗炎因子相互制衡。现从参与动脉粥样硬化发生过程的炎症细胞出发,简要综述斑块发展过程中炎症的机制与双刃剑作用,并为未来的动脉粥样硬化抗炎治疗策略提出可能的靶点。
Abstract:
Inflammation plays an important role in the advance of atherosclerosis. The pathological process of atherosclerosis is caused by the injury of arterial endothelium and abnormal plasma cholesterol level. Subsequently,various immune cells are recruited to the arterial intima through inflammatory response, and participate in the formation and progression of plaque. These cells include macrophages, dendritic cells, smooth muscle cells, T cells, B cells,mast cells,etc. Each of the immune cells is composed of proinflammatory subtype and anti-inflammatory subtype, and produces corresponding pro-inflammatory factors and anti-inflammatory factors to coordinate innate homeostasis. Starting from the inflammatory cells involved in the development of atherosclerosis, this paper briefly reviews the mechanism of inflammation and its double-edged sword effect in the development of plaques, and proposed possible targets for the future anti-inflammatory treatment strategies of atherosclerosis.

参考文献/References:

[1].胡盛寿,高润霖,刘力生,等. 《中国心血管病报告2018》概要[J]. 中国循环杂志,2019, 34(3):209-220.
[2].Libby P,Hansson GK. From focal lipid storage to systemic inflammation:JACC review topic of the week[J]. J Am Coll Cardiol,2019,74(12):1594-1607.
[3].Williams JW,Huang LH,Randolph GJ,et al. Cytokine circuits in cardiovascular disease[J]. Immunity,2019,50(4):941-954.
[4].Libby P,Buring JE,Badimon L,et al. Atherosclerosis[J]. Nat Rev Dis Primers,2019,5(1):56.
[5].Mora S,Wenger NK,Demicco DA,et al. Determinants of residual risk in secondary prevention patients treated with high- versus low-dose statin therapy:the Treating to New Targets(TNT) study[J]. Circulation,2012,125(16):1979-1987.
[6].LaRosa JC,Grundy SM,Waters DD,et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease[J]. N Engl J Med,2005,352(14):1425-1435.
[7].Ridker PM,Everett BM,Thuren T,et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. N Engl J Med,2017,377(12):1119-1131.
[8].Cochain C ,Vafadarnejad E ,Arampatzi P ,et al. Single-cell RNA-Seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis[J]. Circ Res,2018,122 (12):1661-1674.
[9].Fernandez DM ,Rahman AH ,Fernandez NF ,et al. Single-cell immune landscape of human atherosclerotic plaques[J]. Nat Med,2019,25 (10):1576-1588.
[10].Tabas I,Lichtman AH. Monocyte-macrophages and T cells in atherosclerosis[J]. Immunity,2017, 47(4):621-634.
[11].Robbins CS,Hilgendorf I,Weber GF,et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis[J]. Nat M ed,2013,19(9):1166-1172.
[12].Stoneman V,Braganza D,Figg N,et al. Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques[J]. Circ Res,2007,100(6):884-893.
[13].Kim K,Shim D,Lee JS,et al. Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models[J]. Circ Res,2018, 123(10):1127-1142.
[14].Voll RE,Herrmann M,Roth EA,et al. Immunosuppressive effects of apoptotic cells[J]. Nature, 1997,390(6658):350-351.
[15].Foks AC,Ran IA,Wasserman L,et al. T-cell immunoglobulin and mucin domain 3 acts as a negative regulator of atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2013,33(11):2558-2565.
[16].Xu H,Jiang J ,Chen W ,et al. Vascular macrophages in atherosclerosis[J]. J Immunol Res,2019,2019:4354786.
[17].Frodermann V,van Puijvelde GH,Wierts L,et al. Oxidized low-density lipoprotein-induced apoptotic dendritic cells as a novel therapy for atherosclerosis[J]. J Immunol,2015,194(5):2208-2218.
[18].Hosseini H,Li Y,Kanellakis P,et al. Phosphatidylserine liposomes mimic apoptotic cells to attenuate atherosclerosis by expanding polyreactive IgM producing B1a lymphocytes[J]. Cardiovasc Res,2015,106 (3):443-452.
[19].Stewart CR,Stuart LM,Wilkinson K,et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer[J]. Nat Immunol,2010,11(2):155-161.
[20].St?ger JL,Gijbels MJ,van der Velden S,et al. Distribution of macrophage polarization markers in human atherosclerosis[J]. Atherosclerosis,2012,225(2):461-468.
[21].Chinetti-Gbaguidi G,Colin S,Staels B. Macrophage subsets in atherosclerosis[J]. Nat Rev Cardiol,2015,12(1):10-17.
[22].Winkels H,Ehinger E,Vassallo M,et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry[J]. Circ Res,2015, 122(12):1675-1688.
[23].Zernecke A. Dendritic cells in atherosclerosis:evidence in mice and humans[J]. Arterioscler Thromb Vasc Biol,2015,35(4):763-770.
[24].Weber C,Meiler S,Doring Y,et al. CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice[J]. J Clin Invest,2011,121(7):2898-2910.
[25].Choi JH,Cheong C,Dandamudi DB,et al. Flt3 signaling-dependent dendritic cells protect against atherosclerosis[J]. Immunity,2011,35(5):819-831.
[26].Misharin AV,Morales-Nebreda L,Reyfman PA,et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span[J]. J Exp Med,2017,214(8):2387-2404.
[27].Huang LH,Zinselmeyer BH,Chang CH,et al. Interleukin-17 drives interstitial entrapment of tissue lipoproteins in experimental psoriasis[J]. Cell Metab,2019,29(2):475-487.
[28].Bennett MR,Sinha S,Owens GK. Vascular smooth muscle cells in atherosclerosis[J]. Circ Res, 2016,118(4):692-702.
[29].Nus M,Mallat Z. Immune-mediated mechanisms of atherosclerosis and implications for the clinic[J]. Expert Rev Clin Immunol,2016,12(11):1217-1237.
[30].Libby P,Hansson GK. Inflammation and immunity in diseases of the arterial tree:players and layers[J]. Circ Res,2015,116(2):307-311.
[31].Ketelhuth DF,Hansson GK. Adaptive response of T and B cells in atherosclerosis[J]. Circ Res,2016,118(4):668-678.
[32].Schloss MJ,Swirski FK,Nahrendorf M. Modifiable cardiovascular risk,hematopoiesis,and innate immunity[J]. Circ Res,2020,126(9):1242-1259.
[33].Kovanen PT. Mast cells as potential accelerators of human atherosclerosis—from early to late lesions[J]. Int J Mol Sci,2019,20(18):4479.
[34].Winkels H,Ley K. Natural killer cells at ease:atherosclerosis is not affected by genetic depletion or hyperactivation of natural killer cells [J]. Circ Res,2018,122(1):6-7.
[35].VanderLaan PA,Reardon CA,Cabana VG,et al. Invariant natural killer T-cells and total CD1d restricted cells differentially influence lipid metabolism and atherosclerosis in low density receptor deficient mice[J]. Int J Mol Sci,2019,20(18):4566.
[36].Getz GS,Reardon CA. Natural killer T cells in atherosclerosis[J]. Nat Rev Cardiol,2017,14(5):304-314.
[37].Ridker PM,Everett BM,Pradhan A,et al. Low-dose methotrexate for the prevention of atherosclerotic events[J]. N Engl J Med,2019,380(8):752-762.
[38].Leuschner F,Dutta P,Gorbatov R,et al. Therapeutic siRNA silencing in inflammatory monocytes in mice[J]. Nat Biotechnol,2011,29(11):1005-1010.
[39].Tang J,Lobatto ME,Hassing L,et al. Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation[J]. Sci Adv,2015,1(3):e1400223.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(1):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(1):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(1):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(1):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(1):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(1):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(1):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(1):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(1):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(1):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]

更新日期/Last Update: 2021-03-18