[1]刘家汝 关秀茹.Nrf2/ARE信号通路在动脉粥样硬化中的研究新进展[J].心血管病学进展,2020,(8):859-862.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.019]
 LIU Jiaru,GUAN Xiuru.Nrf2/ARE Signaling Pathway in Atherosclerosis[J].Advances in Cardiovascular Diseases,2020,(8):859-862.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.019]





Nrf2/ARE Signaling Pathway in Atherosclerosis
刘家汝 关秀茹
(哈尔滨医科大学附属第一医院检验科,黑龙江 哈尔滨 150001)
LIU JiaruGUAN Xiuru
(Department of Clinical Laboratory The First Affiliated Hospital of Harbin Medical University Harbin 150001 Heilongjiang China)
Atherosclerosis Nuclear factor related factor 2 Oxidative stress
Atherosclerosis is a chronic cardiovascular disease that combines lipid metabolism disorder and inflammatory response. Because the Nrf2/ARE signaling pathway is a signal axis which is extremely sensitive to oxidative stress and has antioxidant activity, it is involved in regulating cell homeostasis, inflammatory factors release and lipid formation. Therefore, Nrf2/ARE signaling pathway is closely related to the formation of endothelial cells and foam cells, and has dual regulatory effects on atherosclerosis. This article reviews the role of Nrf2/ARE signaling pathway in atherosclerosis in order to find a new molecular target for the prevention and treatment of atherosclerosis.


[1].Slocum C,Kramer C,Genco CA. Immune dysregulation mediated by the oral microbiome:potential link to chronic inflammation and atherosclerosis[J]. J Intern Med,2016,280(1):114-128.
[2].Bertin R,Chen Z,Marin R,et al. Activity of myricetin and other plant-derived polyhydroxyl compounds in human LDL and human vascular endothelial cells against oxidative stress[J]. Biomed Pharmacother,2016,82:472-478.
[3].Wei R,Enaka M,Muragaki Y. Activation of KEAP1/NRF2/P62 signaling alleviates high phosphate-induced calcification of vascular smooth muscle cells by suppressing reactive oxygen species production[J]. Sci Rep,2019,9(1):10366.
[4].Yamamoto M,Kensler TW,Motohashi H. The KEAP1-NRF2 System:a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis[J]. Physiol Rev,2018,98(3):1169-1203.
[5].Malhotra D,Portales-Casamar E,Singh A,et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis[J]. Nucleic Acids Res,2010,38(17):5718-5734.
[6].Schmoll D,Engel CK,Glombik H. The Keap1-Nrf2 protein-protein interaction:A suitable target for small molecules[J]. Drug Discov Today Technol,2017,24:11-17.
[7].Silva-Islas CA,Maldonado PD. Canonical and non-canonical mechanisms of Nrf2 activation[J]. Pharmacol Res,2018,134:92-99.
[8].Hashimoto K,Simmons AN,Kajino-Sakamoto R,et al. TAK1 Regulates the Nrf2 Antioxidant System Through Modulating p62/SQSTM1[J]. Antioxid Redox Signal,2016,25(17):953-964.
[9].Goode A,Rea S,Sultana M,et al. ALS-FTLD associated mutations of SQSTM1 impact on Keap1-Nrf2 signalling[J]. Mol and Cell Neurosci,2016,76:52-58.
[10].Riz I,Hawley TS,Marsal JW,et al. Noncanonical SQSTM1/p62-Nrf2 pathway activation mediates proteasome inhibitor resistance in multiple myeloma cells via redox,metabolic and translational reprogramming[J]. Oncotarget,2016,7(41):66360‐66385.
[11].Sun X,Ou Z,Chen R,et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells[J]. Hepatology,2016,63(1):173-184.
[12].[12] Maltese G,Psefteli PM,Rizzo B,et al. The anti-ageing hormone klotho induces Nrf2-mediated antioxidant defences in human aortic smooth muscle cells[J]. J Cell Mol Med,2017 21(3):621-627.
[13].[13] Jin Z,Xiao Y,Yao F,et al. SIRT6 inhibits cholesterol crystal-induced vascular endothelial dysfunction via Nrf2 activation[J]. Exp Cell Res,2020,387(1):111744.
[14].[14] Yan R,Yan J,Chen X,et al. Xanthoangelol Prevents Ox-LDL-Induced Endothelial Cell Injury by Activating Nrf2/ARE Signaling[J]. J Cardiovasc Pharmacol,2019,74(2):162-171.
[15].[15] Huang MZ,Yang YJ,Liu XW,et al. Aspirin eugenol ester attenuates oxidative injury of vascular endothelial cells by regulating NOS and Nrf2 signalling pathways[J]. Br J Pharmacol,2019,176(7):906-918.
[16].[16] Yang Y,Li X,Peng L,et al. Tanshindiol C inhibits oxidized low-density lipoprotein induced macrophage foam cell formation via a peroxiredoxin 1 dependent pathway[J]. Biochim Biophys Acta Mol Basis Dis,2018,1864(3):882-890.
[17].[17] Ooi BK,Goh BH,Yap WH. Oxidative stress in cardiovascular diseases:involvement of Nrf2 antioxidant redox signaling in macrophage foam cells formation[J]. Int J Mol Sci,2017,18(11):2336.
[18].[18] Ren J,Su D,Li L,et al. Anti-inflammatory effects of Aureusidin in LPS-stimulated RAW264.7 macrophages via suppressing NF-κB and activating ROS- and MAPKs-dependent Nrf2/HO-1 signaling pathways[J]. Toxicol Appl Pharmacol,2020,387:114846.
[19].[19] Li H,Zhu X,Hu L,et al. Loss of exosomal MALAT1 from ox-LDL-treated vascular endothelial cells induces maturation of dendritic cells in atherosclerosis development[J]. Cell Cycle,2019,18(18):2255-2267.
[20].[20] Hu Q,Zhang T,Yi L,et al. Dihydromyricetin inhibits NLRP3 inflammasome-dependent pyroptosis by activating the Nrf2 signaling pathway in vascular endothelial cells[J]. Biofactors,2018,44(2):123-136.
[21].[21]武亚琳,梁斌,杨志明. NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J]. 心血管病学进展,2019,40(6):943-946.
[22].[22] Liu J,Yang B,Wang Y,et al. Polychlorinated biphenyl quinone promotes macrophage polarization to CD163+ cells through Nrf2 signaling pathway[J]. Environ Pollut ,2020,257:113587.
[23].[23] Bozaykut P,Karademir B,Yazgan B,et al. Effects of vitamin E on peroxisome proliferator-activated receptor γ and nuclear factor-erythroid 2-related factor 2 in hypercholesterolemia-induced atherosclerosis[J]. Free Radic Biol Med,2014,70:174-181.
[24].[24] Kloska D,Kopacz A,Piechota-Polanczyk A,et al. Nrf2 in aging - Focus on the cardiovascular system [J]. Vascul Pharmacol,2019,112:42-53.
[25].[25] Freigang S,Ampenberger F,Spohn G,et al. Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis[J]. Eur J Immunol,2011,41(7):2040-2051.
[26].[26] Barajas B,Che N,Yin F,et al. NF-E2-related factor 2 promotes atherosclerosis by effects on plasma lipoproteins and cholesterol transport that overshadow antioxidant protection[J]. Arterioscler Thromb Vasc Biol,2011,31(1):58-66.
[27].[27] 孙雪梅,王瑞婷. 核因子相关因子2-抗氧化反应元件信号传导通路对心血管疾病保护作用的研究进展[J]. 临床内科杂志,2015,32(8):572-574.
[28].[28] Matana A,Ziros PG,Chartoumpekis DV,et al. Rare and common genetic variations in the Keap1/Nrf2 antioxidant response pathway impact thyroglobulin gene expression and circulating levels,respectively[J]. Biochem Pharmacol, 2020 ,173:113605.
[29].[29] Ungvari Z,Tarantini S,Nyúl-Tóth ?,et al. Nrf2 dysfunction and impaired cellular resilience to oxidative stressors in the aged vasculature:from increased cellular senescence to the pathogenesis of age-related vascular diseases[J]. GeroScience,2019,41(6):727-738.


 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(8):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(8):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(8):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(8):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(8):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(8):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(8):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(8):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]


通信作者:关秀茹,E-mail:gxr0451@ sina.com
更新日期/Last Update: 2020-11-02