[1]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135-139.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(2):135-139.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
点击复制

糖尿病心肌病的发病机制()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年2期
页码:
135-139
栏目:
综述
出版日期:
2020-02-25

文章信息/Info

Title:
Pathogenesis of Diabetic Cardiomyopathy
作者:
位晨晨钟明
(山东大学心血管重构与功能研究教育部、国家卫健委及中国医学科学院重点实验室 心血管转换医学省部共建国家重点实验室 山东大学齐鲁医院心血管内科,山东 济南 250012)
Author(s):
WEI Chenchen ZHONG Ming
(The Key Laboratory of Cardiovascular Remodeling and Function Research,Chinese Ministry of Education,Chinese National Health Commission and Chinese Academy of Medical Sciences,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine,Qilu Hospital of Shandong University,Jinan 250012,Shandong,China)
关键词:
糖尿病心肌病胰岛素抵抗脂毒性氧化应激炎症反应心肌纤维化自噬
Keywords:
Diabetic cardiomyopathy Insulin resistance Lipotoxicity Oxidative stress Inflammatory reaction Cardiac fibrosis Autophagy
DOI:
10.16806/j.cnki.issn.1004-3934.20.02.009
摘要:
糖尿病心肌病是糖尿病严重的心血管并发症之一,严重影响糖尿病患者的生活质量。其发病机制复杂,心肌代谢障碍、氧化应激炎症反应等都与糖尿病患者的心脏功能障碍和心力衰竭的发展独立相关。近年来人们对糖尿病心肌病的研究和认识不断深入,现主要对糖尿病心肌病发病机制做一综述。
Abstract:
Diabetic cardiomyopathy is one of the serious cardiovascular complications of diabetes mellitus seriously affects the life quality of diabetic patients. Its pathogenesis is complicated. Myocardial metabolic disorder,oxidative stress,inflammatory reaction and so on are independently related to the development of cardiac dysfunction and heart failure in diabetic patients. In recent years,the research and understanding of diabetic cardiomyopathy have been deepening. This article mainly reviews the pathogenesis of diabetic cardiomyopathy

参考文献/References:

[1].Mozaffarian DBenjamin EJ,Go AS,et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association[J]. Circulation,2015,131(4):e29-e322.
[2].Gogg S,Smith U,Jansson PA. Increased MAPK activation and impaired insulin signaling in subcutaneous microvascular endothelial cells in type 2 diabetes:the role of endothelin-1[J]. Diabetes,2009,58(10):2238-2245.
[3].da Costa RM,Neves KB,Mestriner FL,et al. TNF-α induces vascular insulin resistance via positive modulation of PTEN and decreased Akt/eNOS/NO signaling in high fat diet-fed mice[J]. Cardiovasc Diabetol,2016,15(1):119-119.
[4].Liu F,Song R,Feng Y,et al. Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor α[J]. Circulation,2015,131(9):795-804.
[5].Steinbusch LK,Schwenk RW,Ouwens DM,et al. Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes[J]. Cell Mol Life Sci,2011,68(15):2525-2538.
[6].Glatz JFC,Luiken JJFP. Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization[J]. J Lipid Res,2018,59(7):1084-1093.
[7].Mandavia CH,Aroor AR,DeMarco VG,et al. Molecular and metabolic mechanisms of cardiac dysfunction in diabetes[J]. Life Sci,2013,92(11):601-608.
[8].Faria A,Persaud SJ. Cardiac oxidative stress in diabetes: mechanisms and therapeutic potential[J]. Pharmacol Ther,2017,172:50-62.
[9].Donath MY,Shoelson SE. Type 2 diabetes as an inflammatory disease[J]. Nat Rev Immunol,2011,11(2):98-107.
[10].Li H,Shi Y,Wang X,et al. Piceatannol alleviates inflammation and oxidative stress via modulation of the Nrf2/HO-1 and NF-κB pathways in diabetic cardiomyopathy[J]. Chem Biol Interact,2019,310:108754.
[11].Echem C,Bomfim GF,Ceravolo GS,et al. Anti-toll like receptor 4 (TLR4) therapy diminishes cardiac remodeling regardless of changes in blood pressure in spontaneously hypertensive rats (SHR) [J]. Int J Cardiol,2015,187:243-245.
[12].Zhang Y,Wang JH,Zhang YY,et al. Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFβ1 and miR-29 pathways[J]. Sci Rep,2016,6:23010.
[13].Duerrschmid C,Crawford JR,Reineke E,et al. TNF receptor 1 signaling is critically involved in mediating angiotensin-II-induced cardiac fibrosis[J]. J Mol Cell Cardiol,2013,57:59-67.
[14].Bidasee KR,Zhang Y,Shao CH,et al. Diabetes increases formation of advanced glycation end products on Sarco (endo) plasmic reticulum Ca2+-ATPase[J]. Diabetes,2004,53(2):463-473.
[15].Cheng YS,Dai DZ,Dai Y,et al. Exogenous hydrogen sulphide ameliorates diabetic cardiomyopathy in rats by reversing disordered calcium-handling system in sarcoplasmic reticulum[J]. J Pharm Pharmacol,2016,68(3):379-388.
[16].Tabassum A,Mahboob T. Role of peroxisome proliferator-activated receptor-gamma activation on visfatin,advanced glycation end products,and renal oxidative stress in obesity-induced type 2 diabetes mellitus[J]. Hum Exp Toxicol,2018,37(11):1187-1198.
[17].Pei Z,Deng Q,Babcock SA,et al. Inhibition of advanced glycation endproduct(AGE) rescues against streptozotocin-induced diabetic cardiomyopathy: role of autophagy and ER stress[J]. Toxicol Lett,2018,284:10-20.
[18].Zhou Y,Wu W. The sodium-glucose co-transporter 2 inhibitor,empagliflozin,protects against diabetic cardiomyopathy by inhibition of the endoplasmic reticulum stress pathway[J]. Cell Physiol Biochem,2017,41(6):2503-2512.
[19].Yue Y,Meng K,Pu Y,et al. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy[J]. Diabetes Res Clin Pract,2017,133:124-130.
[20].Yan XL,Wang YY,Yu ZF,et al. Peroxisome proliferator-activated receptor-gamma activation attenuates diabetic cardiomyopathy via regulation of the TGF-β/ERK pathway and epithelial-to-mesenchymal transition[J]. Life Sci,2018,213:269-278.
[21].Li G,Xing W,Zhang M,et al. Antifibrotic cardioprotection of berberine via downregulating myocardial IGF-1 receptor-regulated MMP-2/MMP-9 expression in diabetic rats[J]. Am J Physiol Heart Circ Physiol,2018,315(4):H802-H813.
[22].Widyantoro B,Emoto N,Nakayama K,et al. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic heart through stimulation of endothelial to mesenchymal transition[J]. Circulation,2010,121(22):2407-2418.
[23].Sharma V,Dogra N,Saikia UN,et al. Transcriptional regulation of endothelial-to-mesenchymal transition in cardiac fibrosis: role of myocardin-related transcription factor A and activating transcription factor 3[J]. Can J Physiol Pharmacol,2017,95(10):1263-1270.
[24].Nemes A,Forster T,Lengyel C,et al. Reduced aortic distensibility and coronary flow velocity reserve in diabetes mellitus patients with a negative coronary angiogram[J]. Can J Cardiol,2007,23(6):445-450.
[25].Catrina SB. Impaired hypoxia-inducible factor(HIF) regulation by hyperglycemia[J]. J Mol Med,2014,92(10):1025-1034.
[26].Li Z,Abdullah CS,Jin ZQ. Inhibition of PKC-θ preserves cardiac function and reduces fibrosis in streptozotocin-induced diabetic cardiomyopathy[J]. Br J Pharmacol,2014,171(11):2913-2924.
[27].Jia G,Hill MA,Sowers JR. Diabetic cardiomyopathy:an update of mechanisms contributing to this clinical entity[J]. Circ Res,2018,122(4):624-638.
[28].王振亚江洪. 自主神经再平衡与缺血性室性心律失常[J]. 心血管病学进展2019,40(2):268-272.
[29].Mialet-Perez J,Vindis C. Autophagy in health and disease: focus on the cardiovascular system[J]. Essays Biochem,2017,61(6):721-732.
[30].Delbridge LMD,Mellor KM,Taylor DJ,et al. Myocardial stress and autophagy: mechanisms and potential therapies[J]. Nat Rev Cardiol,2017,14(7):412-425.
[31].Kobayashi S,Liang Q. Autophagy and mitophagy in diabetic cardiomyopathy[J]. Biochim Biophys Acta,2015,1852(2):252-261.
[32].Westermeier F,Riquelme JA,Pavez M,et al. New molecular insights of insulin in diabetic cardiomyopathy[J]. Front Physiol,2016,7:125-125.
[33].Huang-Doran I,Zhang CY,Vidal-Puig A. Extracellular vesicles:novel mediators of cell communication in metabolic disease[J]. Trends Endocrinol Metab,2017,28(1):3-18.
[34].Wang X,Gu H,Huang W,et al. Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice[J]. Diabetes,2016,65(10):3111-3128.
[35].Asrih M,Steffens S. Emerging role of epigenetics and miRNA in diabetic cardiomyopathy[J]. Cardiovasc Pathol,2013,22(2):117-125.

相似文献/References:

[1]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
 WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(2):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[2]杨沫,姜文锡.线粒体功能异常在糖尿病心肌病发病机制中的作用[J].心血管病学进展,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
 YANG Mo,JIANG Wenxi.Mitochondrial Dysfunction of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(2):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
[3]朱月红,戴启明.糖尿病心肌病的内质网病变机制及干预[J].心血管病学进展,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
 ZHU Yuehong,DAI Qiming.Advance of Mechanism and Intervention of Endoplasmic Reticulum in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(2):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
[4]陈炜,许贞蓉.表观遗传学与代谢性心血管疾病的研究进展[J].心血管病学进展,2019,(6):902.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.016]
 CHEN Wei,XU Zhenrong.Epigenetics and Cardiometabolic Disease[J].Advances in Cardiovascular Diseases,2019,(2):902.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.016]
[5]占小锋 张长磊 李刚.β肾上腺素受体阻滞剂对甘油三酯代谢的影响及其作用机制的阐述[J].心血管病学进展,2019,(9):1298.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.029]
 ZHAN Xiaofeng,ZHANG Changlei,LI Gang.Effect of -adrenergic Receptor Blockers on Triglyceride Metabolism and Mechanism[J].Advances in Cardiovascular Diseases,2019,(2):1298.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.029]
[6]李莎 熊峰.胰岛素抵抗与心血管疾病研究进展[J].心血管病学进展,2019,(9):1307.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.032]
 Li ShaXiong Feng.Insulin Resistance and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(2):1307.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.032]
[7]任蕾 夏芳芳 戴红艳.血管生成素样蛋白6在心血管病方面的研究进展[J].心血管病学进展,2020,(4):388.[doi:10.16806/j.cnki.issn.1004-3934.20.04.015]
 REN Lei,XIA FangFang,DAI HongYan.Relationship Between ANGPTL6 and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(2):388.[doi:10.16806/j.cnki.issn.1004-3934.20.04.015]
[8]杨晓倩 秦莉 张艺文 童兰 汪汉.糖皮质激素与心血管疾病[J].心血管病学进展,2020,(4):404.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.019]
 YANG Xiaoqian,QIN Li,ZHANG Yiwen,et al.Glucocorticoid and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(2):404.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.019]
[9]樊德慧 金娟 韩宇博 田苗 刘莉.利钠肽与代谢综合征的研究进展[J].心血管病学进展,2020,(10):1074.[doi:10.16806/j.cnki.issn.1004-3934.20.10.018]
 FAN Dehui,JIN Juan,HAN Yubo,et al.Research Progress of Natriuretic Peptide and Metabolic Syndrome[J].Advances in Cardiovascular Diseases,2020,(2):1074.[doi:10.16806/j.cnki.issn.1004-3934.20.10.018]
[10]廖丽萍 周跟东 张晓红.血清甘油三酯葡萄糖乘积指数与代谢性疾病的研究进展[J].心血管病学进展,2020,(11):1189.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]

更新日期/Last Update: 2020-04-14