[1]李宸钰 王旭.间接量热法应用于先天性心脏病围手术期营养支持的研究进展[J].心血管病学进展,2025,(1):11.[doi:10.16806/j.cnki.issn.1004-3934.2025.01.003]
 LI Chenyu,WANG Xu.Indirect Calorimetry for Perioperative Nutritional Support in Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2025,(1):11.[doi:10.16806/j.cnki.issn.1004-3934.2025.01.003]
点击复制

间接量热法应用于先天性心脏病围手术期营养支持的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2025年1期
页码:
11
栏目:
综述
出版日期:
2025-01-25

文章信息/Info

Title:
Indirect Calorimetry for Perioperative Nutritional Support in Congenital Heart Disease
作者:
李宸钰 王旭
(中国医学科学院 北京协和医学院 国家心血管病中心 阜外医院儿童重症监护室,北京 100037)
Author(s):
LI ChenyuWANG Xu
(Department of Pediatric Intensive Care Unit,National Center for Cardiovascular Disease,Fuwai Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100037,China)
关键词:
间接量热法先天性心脏病营养支持静息能量消耗
Keywords:
Indirect calorimetryCongenital heart diseaseNutritional supportResting energy expenditure
DOI:
10.16806/j.cnki.issn.1004-3934.2025.01.003
摘要:
先天性心脏病(CHD)患者接受心脏手术时围手术期代谢状况与营养管理存在较大研究缺口,提供充足且耐受性良好的营养支持对于其术后恢复和生长发育至关重要。CHD患儿围手术期代谢情况复杂,间接量热法是评估能量代谢的金标准,现总结其应用于围手术期营养支持的相关进展及方向,为CHD患儿围手术期个体化营养支持提供线索。
Abstract:
The perioperative metabolic status and nutritional management of congenital heart disease(CHD) patients undergoing cardiac surgery present significant research gaps. Adequate and well-tolerated nutritional support is paramount for their postoperative recovery and development. The perioperative metabolic situation of CHD patients is complex,with indirect calorimetry as the gold standard for assessing energy metabolism. This article aims to summarize research advancements and directions in applying indirect calorimetry to perioperative nutrition al support for CHD patients,offering insights for personalized nutrition al support during the perioperative period

参考文献/References:

[1] Diao J,Chen L,Wei J,et al. Prevalence of malnutrition in children with congenital heart disease:a systematic review and meta-analysis[J]. J Pediatr,2022,242:39-47.e4.

[2] Floh AA,Manlhiot C,Redington AN ,et al. Insulin resistance and inflammation are a cause of hyperglycemia after pediatric cardiopulmonary bypass surgery[J]. J Thorac Cardiovasc Surg,2015,150(3):498-504.e1.

[3] Coss-Bu JA,Klish WJ,Walding D,et al. Energy metabolism,nitrogen balance,and substrate utilization in critically ill children[J]. Am J Clin Nutr,2001,74(5):664-669.

[4] 戚继荣,莫绪明,李荣,等. 儿童营养风险及发育不良筛查工具用于先天性心脏病患儿围术期营养风险筛查[J]. 中华临床营养杂志,2014,22(1):38-42.

[5] Martínez-Ortega AJ,Pi?ar-Gutiérrez A,Serrano-Aguayo P,et al. Perioperative nutritional support:a review of current literature[J]. Nutrients,2022,14(8):1601.

[6] Stoppe C,Whitlock R,Arora RC,et al. Nutrition support in cardiac surgery patients:be calm and feed on![J]. J Thorac Cardiovasc Surg,2019,158(4):1103-1108.

[7] Fuller S,Kumar SR,Roy N,et al. The American Association for Thoracic Surgery Congenital Cardiac Surgery Working Group 2021 consensus document on a comprehensive perioperative approach to enhanced recovery after pediatric cardiac surgery[J]. J Thorac Cardiovasc Surg,2021,162(3):931-954.

[8] Efremov SM ,Ionova TI,Nikitina TP,et al. Effects of malnutrition on long-term survival in adult patients after elective cardiac surgery[J]. Nutrition,2021,83:111057.

[9] Heidegger CP,Berger MM,Graf S,et al. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients:a randomised controlled clinical trial[J]. Lancet,2013,381(9864):385-393.

[10] Ni P,Wang X,Xu Z,et al. Effect of high-energy and/or high-protein feeding in children with congenital heart disease after cardiac surgery:a systematic review and meta-analysis[J]. Eur J Pediatr,2023,182(2):513-524.

[11] Zhang J,Cui YQ,Luo Y,et al. Assessment of energy and protein requirements in relation to nitrogen kinetics,nutrition,and clinical outcomes in infants receiving early enteral nutrition following cardiopulmonary bypass[J]. JPEN J Parenter E nteral Nutr,2021,45(3):553-566.

[12] Arabi YM,Aldawood AS,Haddad SH,et al. Permissive underfeeding or standard enteral feeding in critically ill adults[J]. N Engl J Med,2015,372(25):2398-2408.

[13] Simsic JM,Carpenito KR,Kirchner K,et al. Reducing variation in feeding newborns with congenital heart disease[J]. Congenit Heart Dis,2017,12(3):275-281.

[14] Furlong-Dillard J,Neary A,Marietta J,et al. Evaluating the impact of a feeding protocol in neonates before and after biventricular cardiac surgery[J]. Pediatr Qual Saf,2018,3(3):e080.

[15] Kaiyala KJ,Wisse BE,Lighton JRB. Validation of an equation for energy expenditure that does not require the respiratory quotient[J]. PLoS One,2019,14(2):e0211585.

[16] Achamrah N,Delsoglio M,de Waele E,et al. Indirect calorimetry:the 6 main issues[J]. Clin Nutr,2021,40(1):4-14.

[17] Luca AC,Miron IC,M?ndru DE,et al. Optimal nutrition parameters for neonates and infants with congenital heart disease[J]. Nutrients,2022,14(8):1671.

[18] Duan JY,Zheng WH,Zhou H,et al. Energy delivery guided by indirect calorimetry in critically ill patients:a systematic review and meta-analysis[J]. Crit Care,2021,25(1):88.

[19] Watanabe S,Izumino H,Takatani Y,et al. Effects of energy delivery guided by indirect calorimetry in critically ill patients:a systematic review and meta-analysis[J]. Nutrients,2024,16(10):1452.

[20] Alcantara JMA,Galgani JE,Jurado-Fasoli L,et al. Validity of four commercially available metabolic carts for assessing resting metabolic rate and respiratory exchange ratio in non-ventilated humans[J]. Clin Nutr,2022,41(3):746-754.

[21] Schadewaldt P,Nowotny B,Strassburger K,et al. Indirect calorimetry in humans:a postcalorimetric evaluation procedure for correction of metabolic monitor variability[J]. Am J Clin Nutr ,2013,97(4):763-773.

[22] Alcantara JMA,Sanchez-Delgado G,Jurado-Fasoli L,et al. Reproducibility of the energy metabolism response to an oral glucose tolerance test:influence of a postcalorimetric correction procedure[J]. Eur J Nutr,2023,62(1):351-361.

[23] Borges JH,Guerra-Júnior G,Gon?alves EM. Methods for data analysis of resting energy expenditure measured using indirect calorimetry[J]. Nutrition,2019,59:44-49.

[24] Mills KI,Kim JH,Fogg K,et al. Nutritional considerations for the neonate with congenital heart disease[J]. Pediatrics,2022,150(suppl 2):e2022056415G.

[25] Singer P,Blaser AR,Berger MM,et al. ESPEN practical and partially revised guideline:clinical nutrition in the intensive care unit[J]. Clin Nutr,2023,42(9):1671-1689.

[26] Beggs MR,Garcia Guerra G,Larsen BMK. Do PICU patients meet technical criteria for performing indirect calorimetry?[J]. Clin Nutr ESPEN,2016,15:80-84.

[27] Yost G,Gregory M,Bhat G. Nutrition assessment with indirect calorimetry in patients evaluated for left ventricular assist device implantation[J]. Nutr Clin Pract, 2015,30(5):690-697.

[28] Shinozaki K,Yu PJ,Zhou Q,et al. Continuous and repeat metabolic measurements compared between post-cardiothoracic surgery and critical care patients[J]. BMC Pulm Med,2023,23(1):390.

[29] Shinozaki K,Yu PJ,Zhou Q,et al. An automation system equivalent to the Douglas Bag technique enables continuous and repeat metabolic measurements in patients undergoing mechanical ventilation[J]. Clin Ther,2022,44(11):1471-1479.

[30] Stuart-Andrews C,Peyton P,Robinson G,et al. Non-invasive metabolic monitoring of patients under anaesthesia by continuous indirect calorimetry—An in vivo trial of a new method[J]. Br J Anaesth,2007,98(1):45-52.

[31] Briesenick L,Schaade A,Bergholz A ,et al. Energy expenditure under general anesthesia:an observational study using indirect calorimetry in patients having noncardiac surgery[J]. Anesth Analg ,2023,137(1):169-175.

[32] van der Kuip M,Hoos MB,Forget PP,et al. Energy expenditure in infants with congenital heart disease,including a meta-analysis[J]. Acta Paediatr ,2003,92(8):921-927.

[33] Li J,Zhang G,Herridge J,et al. Energy expenditure and caloric and protein intake in infants following the Norwood procedure[J]. Pediatr Crit Care Med ,2008,9(1):55-61.

[34] Mehta NM,Costello JM,Bechard LJ,et al. Resting energy expenditure after Fontan surgery in children with single-ventricle heart defects[J]. JPEN J Parenter Enteral Nutr,2012,36(6):685-692.

[35] Shine AM,Foyle L,Gentles E,et al. Growth and nutritional intake of infants with univentricular circulation[J]. J Pediatr ,2021,237:79-86.e2.

[36] Avitzur Y,Singer P,Dagan O,et al. Resting energy expenditure in children with cyanotic and noncyanotic congenital heart disease before and after open heart surgery[J]. JPEN J Parenter Enteral Nutr,2003,27(1):47-51.

[37] Leitch CA,Karn CA,Peppard RJ,et al. Increased energy expenditure in infants with cyanotic congenital heart disease[J]. J Pediatr,1998,133(6):755-760.

[38] Ackerman IL,Karn CA,Denne SC,et al. Total but not resting energy expenditure is increased in infants with ventricular septal defects[J]. Pediatrics,1998,102(5):1172-1177.

[39] Ashrafi AH,Mazwi M,Sweeney N,et al. Preoperative management of neonates with congenital heart disease[J]. Pediatrics,2022,150(suppl 2):e2022056415F.

[40] Martini S,Beghetti I,Annunziata M,et al. Enteral nutrition in term infants with congenital heart disease:knowledge gaps and future directions to improve clinical practice[J]. Nutrients,2021,13(3):932.

[41] Kirk D,Catal C,Tekinerdogan B. Precision nutrition:a systematic literature review[J]. Comput Biol Med,2021,133:104365.

[42] Singer P,Anbar R,Cohen J,et al. The tight calorie control study(TICACOS):a prospective,randomized,controlled pilot study of nutritional support in critically ill patients[J]. Intensive Care Med,2011,37(4):601-609.

相似文献/References:

[1]郭琳娟,洪葵.成人先天性心脏病心律失常的诊断和治疗进展[J].心血管病学进展,2015,(6):752.[doi:10.3969/j.issn.1004-3934.2015.06.024]
 GUO Linjuan,HONG Kui.Advances in Diagnosis and Treatment of Adult Congenital Heart Disease with Arrhythmia[J].Advances in Cardiovascular Diseases,2015,(1):752.[doi:10.3969/j.issn.1004-3934.2015.06.024]
[2]朱峰,陈铀.先天性心脏病相关肺动脉高压的治疗进展[J].心血管病学进展,2019,(6):894.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.014]
 ZHU Feng,CHEN You.Congenital Heart Disease-related Pulmonary Arterial Hypertension[J].Advances in Cardiovascular Diseases,2019,(1):894.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.014]
[3]黄金秋 路发文 赵永康 陈宇雨 史红蕊 王萍 杨菊仙.先天性心脏病患儿营养状况及其危险因素分析[J].心血管病学进展,2020,(12):1324.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.023]
 HUANG Jinqiu,LU Fawen,ZHAO Yongkang,et al.Nutritional Status in Children with Congenital Heart Disease and the Influential Factors[J].Advances in Cardiovascular Diseases,2020,(1):1324.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.023]
[4]周玲梅 张文倩 张智伟.体-肺动脉分流术在建立先天性心脏病动物模型中的应用进展[J].心血管病学进展,2021,(7):628.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.013]
 ZHOU Lingmei,ZHANG Wenqian,ZHANG Zhiwei.Application Progress of Systemic Pulmonary Arterial Shunt in Animal Model of Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2021,(1):628.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.013]
[5]林锡祥 杨菲菲 陈煦 何昆仑.人工智能赋能医学影像在先天性心脏病医学诊治中的研究进展[J].心血管病学进展,2022,(12):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]
 LIN Xixiang,YANG Feifei,CHEN Xu,et al.Artificial Intelligence Medical Imaging Technology in Medical Imaging of Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2022,(1):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]
[6]刘晓旭 莫绪明.先天性心脏病患儿心肺转流术后肠道损伤机制及治疗进展[J].心血管病学进展,2023,(6):501.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.0005]
 LIU Xiaoxu,MO Xuming.Mechanism and Treatment of Intestinal Injury After Cardiopulmonary Bypass in Children with Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2023,(1):501.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.0005]
[7]董捷 杜楚豪 董硕 刘顺 徐海涛 孙阳雪 邹孟轩 孙家树 李守军 杨克明 闫军.Uhl畸形诊断与治疗研究进展[J].心血管病学进展,2023,(8):686.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.004]
 DONG Jie DU Chuhao DONG ShuoLIU Shun,XU HaitaoSUN YangxueZOU MengxuanSUN JiashuLI Shoujun,YANG Keming,et al.Diagnosis and Treatment for Uhls Anomaly[J].Advances in Cardiovascular Diseases,2023,(1):686.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.004]
[8]陈颖慧 冯奕源 冯炜琦 吴逸卓 鲁亚南 于昱.血管发育异常的先天性心脏病患儿中Vav2基因突变的筛查和功能分析[J].心血管病学进展,2023,(8):757.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.019]
 CHEN Yinghui,FENG Yiyuan,FENG Weiqi,et al.Identification and Functional Analysis of Vav2 Novel Variant in Congenital Heart Diseases with Vascular Malformation[J].Advances in Cardiovascular Diseases,2023,(1):757.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.019]
[9]李强强 顾虹.中国儿童肺动脉高压诊治现状[J].心血管病学进展,2024,(1):7.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.003]
 LI Qiangqiang,GU Hong.Current Status of Diagnosis and Treatment of Pulmonary Hypertension in Chinese Children[J].Advances in Cardiovascular Diseases,2024,(1):7.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.003]
[10]李思聪 罗勤 赵智慧 赵青 柳志红.房间隔缺损相关肺动脉高压机制及治疗进展[J].心血管病学进展,2024,(1):11.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.004]
 LI Sicong,LUO Qin,ZHAO Zhihui,et al.Pathogenesis and Treatment of Pulmonary Hypertension Associated with Atrial Septal Defect[J].Advances in Cardiovascular Diseases,2024,(1):11.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.004]

更新日期/Last Update: 2025-02-26