参考文献/References:
[1] Bennett MR,Sinha S,Owens GK. Vascular smooth muscle cells in atherosclerosis[J]. Circ Res,2016,118(4):692-702.
[2] Grootaert MOJ,Bennett MR. Vascular smooth muscle cells in atherosclerosis:time for a re-assessment[J]. Cardiovasc Res,2021,117(11):2326-2339.
[3] Zhang F,Guo XQ,Xia YP,et al. An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis[J]. Cell Mol Life Sci,2021,79(1):6.
[4] Shankman LS,Gomez D,Cherepanova OA,et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis[J]. Nat Med,2015,21(6):628-637.
[5] Alencar GF,Owsiany KM,Karnewar S,et al. Stem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis[J]. Circulation,2020,142(21):2045-2059.
[6] Wissler RW,Vesselinovitch D. Comparative pathogenetic patterns in atherosclerosis[J]. Adv Lipid Res,1968,6:181-206.
[7] Allahverdian S,Chehroudi AC,McManus BM,et al. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis[J]. Circulation,2014,129(15):1551-1559.
[8] Wang Y,Dubland JA,Allahverdian S,et al. Smooth muscle cells contribute the majority of foam cells in ApoE (apolipoprotein E)-deficient mouse atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2019,39(5):876-887.
[9] Xue JH,Yuan ZY,Wu Y,et al. High glucose promotes intracellular lipid accumulation in vascular smooth muscle cells by impairing cholesterol influx and efflux balance[J]. Cardiovasc Res,2010,86(1):141-150.
[10] Ruan XZ,Moorhead JF,Tao JL,et al. Mechanisms of dysregulation of low-density lipoprotein receptor expression in vascular smooth muscle cells by inflammatory cytokines[J]. Arterioscler Thromb Vasc Biol,2006,26(5):1150-1155.
[11] Gabunia K,Herman AB,Ray M,et al. Induction of MiR133a expression by IL-19 targets LDLRAP1 and reduces oxLDL uptake in VSMC [J]. J Mol Cell Cardiol,2017,105:38-48.
[12] Sendra J,Llorente-Cortes V,Costales P,et al. Angiotensin Ⅱ upregulates LDL receptor-related protein (LRP1) expression in the vascular wall:a new pro-atherogenic mechanism of hypertension[J]. Cardiovasc Res ,2008,78(3):581-589.
[13] Moore KJ,Sheedy FJ,Fisher EA. Macrophages in atherosclerosis:a dynamic balance[J]. Nat Rev Immunol,2013,13(10):709-721.
[14] Lu S,Weiser-Evans MCM. Lgals3-transitioned inflammatory smooth muscle cells:major regulators of atherosclerosis progression and inflammatory cell recruitment[J]. Arterioscler Thromb Vasc Biol,2022,42(8):957-959.
[15] Vengrenyuk Y,Nishi H,Long XC,et al. Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype[J]. Arterioscler Thromb Vasc Biol,2015,35(3):535-546.
[16] Han ZY,Hu HD,Yin MZ,et al. HOXA1 participates in VSMC-to-macrophage-like cell transformation via regulation of NF-κB p65 and KLF4:a potential mechanism of atherosclerosis pathogenesis[J]. Mol Med,2023,29(1):104.
[17] Chattopadhyay A,Kwartler CS,Kaw K,et al. Cholesterol-induced phenotypic modulation of smooth muscle cells to macrophage/fibroblast-like cells is driven by an unfolded protein response[J]. Arterioscler Thromb Vasc Biol,2021,41(1):302-316.
[18] Cao GM,Xuan XZ,Hu J,et al. How vascular smooth muscle cell phenotype switching contributes to vascular disease[J]. Cell Commun Signal,2022,20(1):180.
[19] Wirka RC,Wagh D,Paik DT,et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis[J]. Nat Med,2019,25(8):1280-1289.
[20] Shen Y,Xu LR,Yan D,et al. BMAL1 modulates smooth muscle cells phenotypic switch towards fibroblast-like cells and stabilizes atherosclerotic plaques by upregulating YAP1[J]. Biochim Biophys Acta Mol Basis Dis,2022,1868(9):166450.
[21] Onnis C,Virmani R,Kawai K,et al. Coronary artery calcification: current concepts and clinical implications[J]. Circulation,2024,149(3):251-266.
[22] Nakahara T,Dweck MR,Narula N,et al. Coronary artery calcification: from mechanism to molecular imaging[J]. JACC Cardiovasc Imaging,2017,10(5):582-593.
[23] Naik V,Leaf EM,Hu JH,et al. Sources of cells that contribute to atherosclerotic intimal calcification:an in vivo genetic fate mapping study[J]. Cardiovasc Res,2012,94(3):545-554.
[24] McRobb LS,McGrath KCY,Tsatralis T,et al. Estrogen receptor control of atherosclerotic calcification and smooth muscle cell osteogenic differentiation[J]. Arterioscler Thromb Vasc Biol,2017,37(6):1127-1137.
[25] Seime T,Akbulut AC,Liljeqvist ML,et al. Proteoglycan 4 modulates osteogenic smooth muscle cell differentiation during vascular remodeling and intimal calcification[J]. Cells,2021,10(6):1276.
[26] Skenteris NT,Seime T,Witasp A,et al. Osteomodulin attenuates smooth muscle cell osteogenic transition in vascular calcification[J]. Clin Transl Med,2022,12(2):e682.
[27] Li TT,Yu HC,Zhang DM,et al. Matrix vesicles as a therapeutic target for vascular calcification[J]. Front Cell Dev Biol,2022,10:825622.
[28] Willems BA,Furmanik M,Caron MMJ,et al. Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling[J]. Sci Rep,2018,8(1):4961.
[29] Lanzer P,Hannan FM,Lanzer JD,et al. Medial arterial calcification: JACC state-of-the-art review[J]. J Am Coll Cardiol,2021,78(11):1145-1165.
[30] Park HJ,Kim MK,Kim Y,et al. Neuromedin B modulates phosphate-induced vascular calcification[J]. BMB Rep,2021,54(11):569-574.
[31] Lin X,Li S,Wang YJ,et al. Exosomal Notch3 from high glucose-stimulated endothelial cells regulates vascular smooth muscle cells calcification/aging[J]. Life Sci,2019,232:116582.
[32] Xu SN,Zhou X,Zhu CJ,et al. N?-carboxymethyl-lysine deteriorates vascular calcification in diabetic atherosclerosis induced by vascular smooth muscle cell-derived foam cells[J]. Front Pharmacol,2020,11:626.
[33] Lee GL,Yeh CC,Wu JY,et al. TLR2 Promotes vascular smooth muscle cell chondrogenic differentiation and consequent calcification via the concerted actions of osteoprotegerin suppression and IL-6-mediated RANKL induction[J]. Arterioscler Thromb Vasc Biol,2019,39(3):432-445.
[34] Yang R,Zhu Y,Wang Y,et al. HIF-1α/PDK4/autophagy pathway protects against advanced glycation end-products induced vascular smooth muscle cell calcification[J]. Biochem Biophys Res Commun,2019,517(3):470-476.
[35] Lano G,Burtey S,Sallee M. Indoxyl sulfate,a uremic endotheliotoxin[J]. Toxins (Basel),2020,12(4):229.
[36] Yap C,Mieremet A,de Vries CJM,et al. Six shades of vascular smooth muscle cells illuminated by KLF4 (Krüppel-like factor 4) [J]. Arterioscler Thromb Vasc Biol,2021,41(11):2693-2707.
[37] Chen PY,Qin L,Li G,et al. Smooth muscle cell reprogramming in aortic aneurysms[J]. Cell Stem Cell,2020,26(4):542-557.e11.
[38] Pan HZ,Xue CY,Auerbach BJ,et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human[J]. Circulation,2020,142(21):2060-2075.
[39] Kramann R,Goettsch C,Wongboonsin J,et al. Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease[J]. Cell stem cell,2016,19(5):628-642.
[40] Wang HX,Zhao H,Zhu H,et al. Sca1+ cells minimally contribute to smooth muscle cells in atherosclerosis[J]. Circ Res ,2021,128(1):133-135.
[41] Fujiu K,Manabe I,Ishihara A,et al. Synthetic retinoid Am80 suppresses smooth muscle phenotypic modulation and in-stent neointima formation by inhibiting KLF5[J]. Circ Res,2005,97(11):1132-1141.
相似文献/References:
[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(9):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(9):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(9):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(9):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(9):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]