[1]张昊亮 林政凯 陈志杰 陈丽君 杨阳.单细胞测序技术解析血管平滑肌细胞的可塑性在动脉粥样硬化中的作用[J].心血管病学进展,2024,(9):821.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.012]
 ZHANG Haoliang,LIN Zhengkai,CHEN Zhijie,et al.Roles of Vascular Smooth Muscle Cell Plasticity in Development of Atherosclerosis as Revealed by Single-Cell Sequencing[J].Advances in Cardiovascular Diseases,2024,(9):821.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.012]
点击复制

单细胞测序技术解析血管平滑肌细胞的可塑性在动脉粥样硬化中的作用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年9期
页码:
821
栏目:
综述
出版日期:
2024-09-25

文章信息/Info

Title:
Roles of Vascular Smooth Muscle Cell Plasticity in Development of Atherosclerosis as Revealed by Single-Cell Sequencing
作者:
张昊亮1 林政凯1 陈志杰1 陈丽君1 杨阳12
(厦门大学医学院,福建 厦门 361100;2. 厦门大学附属翔安医院心内科,福建 厦门 361100)
Author(s):
ZHANG Haoliang1LIN Zhengkai1CHEN Zhijie1CHEN Lijun1YANG Yang12
(1. School of Medicine, Xiamen University, Xiamen 361100, Fujian, China; 2. Department of Cardiology , Xiang’an Hospital of Xiamen University , Xiamen 361100,Fujian,China)
关键词:
动脉粥样硬化血管平滑肌细胞可塑性单细胞测序
Keywords:
Atherosclerosis Vascular smooth muscle cell Plasticity Single-cell sequencing
DOI:
10.16806/j.cnki.issn.1004-3934.2024.09.012
摘要:
动脉粥样硬化(AS)是由多种免疫细胞参与的慢性炎症性病理过程,其中血管平滑肌细胞(VSMC)在其全过程中起着关键性影响。既往研究显示VSMC具有很高的可塑性,并可在收缩型与分泌型之间进行互相转化。近年来,随着单细胞测序技术的优化和发展,数项新的研究揭示了VSMC具有向其他不同类型细胞转化的能力,且发挥特定的功能。现围绕单细胞测序技术运用下VSMC的可塑性、调控因素以及它们在AS进程中的复杂作用进行综述,以期对全面认识VSMC功能提供帮助,为临床治疗AS提供新的干预靶点和途径。
Abstract:
Atherosclerosis (AS) is a chronic inflammatory disorder involving multiple immune cells , with vascular smooth muscle cell (VSMC) being crucial at each phase. Prior research has demonstrated that VSMC has notable phenotypic plasticity and can switch between contractile and synthetic phenotypes. In recent years, with the optimization and development of single-cell sequencing technology, several new studies have uncovered that VSMC possesses the capability to transform into other cell types and performs specific functions. This review focuses on the plasticity, regulatory factors , and intricate functions of VSMC in AS process under single-cell sequencing technology, in order to offer a thorough insight into the roles of VSMC and identify new targets and pathways for treating AS clinically.

参考文献/References:

[1] Bennett MR,Sinha S,Owens GK. Vascular smooth muscle cells in atherosclerosis[J]. Circ Res,2016,118(4):692-702.

[2] Grootaert MOJ,Bennett MR. Vascular smooth muscle cells in atherosclerosis:time for a re-assessment[J]. Cardiovasc Res,2021,117(11):2326-2339.

[3] Zhang F,Guo XQ,Xia YP,et al. An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis[J]. Cell Mol Life Sci,2021,79(1):6.

[4] Shankman LS,Gomez D,Cherepanova OA,et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis[J]. Nat Med,2015,21(6):628-637.

[5] Alencar GF,Owsiany KM,Karnewar S,et al. Stem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis[J]. Circulation,2020,142(21):2045-2059.

[6] Wissler RW,Vesselinovitch D. Comparative pathogenetic patterns in atherosclerosis[J]. Adv Lipid Res,1968,6:181-206.

[7] Allahverdian S,Chehroudi AC,McManus BM,et al. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis[J]. Circulation,2014,129(15):1551-1559.

[8] Wang Y,Dubland JA,Allahverdian S,et al. Smooth muscle cells contribute the majority of foam cells in ApoE (apolipoprotein E)-deficient mouse atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2019,39(5):876-887.

[9] Xue JH,Yuan ZY,Wu Y,et al. High glucose promotes intracellular lipid accumulation in vascular smooth muscle cells by impairing cholesterol influx and efflux balance[J]. Cardiovasc Res,2010,86(1):141-150.

[10] Ruan XZ,Moorhead JF,Tao JL,et al. Mechanisms of dysregulation of low-density lipoprotein receptor expression in vascular smooth muscle cells by inflammatory cytokines[J]. Arterioscler Thromb Vasc Biol,2006,26(5):1150-1155.

[11] Gabunia K,Herman AB,Ray M,et al. Induction of MiR133a expression by IL-19 targets LDLRAP1 and reduces oxLDL uptake in VSMC [J]. J Mol Cell Cardiol,2017,105:38-48.

[12] Sendra J,Llorente-Cortes V,Costales P,et al. Angiotensin Ⅱ upregulates LDL receptor-related protein (LRP1) expression in the vascular wall:a new pro-atherogenic mechanism of hypertension[J]. Cardiovasc Res ,2008,78(3):581-589.

[13] Moore KJ,Sheedy FJ,Fisher EA. Macrophages in atherosclerosis:a dynamic balance[J]. Nat Rev Immunol,2013,13(10):709-721.

[14] Lu S,Weiser-Evans MCM. Lgals3-transitioned inflammatory smooth muscle cells:major regulators of atherosclerosis progression and inflammatory cell recruitment[J]. Arterioscler Thromb Vasc Biol,2022,42(8):957-959.

[15] Vengrenyuk Y,Nishi H,Long XC,et al. Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype[J]. Arterioscler Thromb Vasc Biol,2015,35(3):535-546.

[16] Han ZY,Hu HD,Yin MZ,et al. HOXA1 participates in VSMC-to-macrophage-like cell transformation via regulation of NF-κB p65 and KLF4:a potential mechanism of atherosclerosis pathogenesis[J]. Mol Med,2023,29(1):104.

[17] Chattopadhyay A,Kwartler CS,Kaw K,et al. Cholesterol-induced phenotypic modulation of smooth muscle cells to macrophage/fibroblast-like cells is driven by an unfolded protein response[J]. Arterioscler Thromb Vasc Biol,2021,41(1):302-316.

[18] Cao GM,Xuan XZ,Hu J,et al. How vascular smooth muscle cell phenotype switching contributes to vascular disease[J]. Cell Commun Signal,2022,20(1):180.

[19] Wirka RC,Wagh D,Paik DT,et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis[J]. Nat Med,2019,25(8):1280-1289.

[20] Shen Y,Xu LR,Yan D,et al. BMAL1 modulates smooth muscle cells phenotypic switch towards fibroblast-like cells and stabilizes atherosclerotic plaques by upregulating YAP1[J]. Biochim Biophys Acta Mol Basis Dis,2022,1868(9):166450.

[21] Onnis C,Virmani R,Kawai K,et al. Coronary artery calcification: current concepts and clinical implications[J]. Circulation,2024,149(3):251-266.

[22] Nakahara T,Dweck MR,Narula N,et al. Coronary artery calcification: from mechanism to molecular imaging[J]. JACC Cardiovasc Imaging,2017,10(5):582-593.

[23] Naik V,Leaf EM,Hu JH,et al. Sources of cells that contribute to atherosclerotic intimal calcification:an in vivo genetic fate mapping study[J]. Cardiovasc Res,2012,94(3):545-554.

[24] McRobb LS,McGrath KCY,Tsatralis T,et al. Estrogen receptor control of atherosclerotic calcification and smooth muscle cell osteogenic differentiation[J]. Arterioscler Thromb Vasc Biol,2017,37(6):1127-1137.

[25] Seime T,Akbulut AC,Liljeqvist ML,et al. Proteoglycan 4 modulates osteogenic smooth muscle cell differentiation during vascular remodeling and intimal calcification[J]. Cells,2021,10(6):1276.

[26] Skenteris NT,Seime T,Witasp A,et al. Osteomodulin attenuates smooth muscle cell osteogenic transition in vascular calcification[J]. Clin Transl Med,2022,12(2):e682.

[27] Li TT,Yu HC,Zhang DM,et al. Matrix vesicles as a therapeutic target for vascular calcification[J]. Front Cell Dev Biol,2022,10:825622.

[28] Willems BA,Furmanik M,Caron MMJ,et al. Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling[J]. Sci Rep,2018,8(1):4961.

[29] Lanzer P,Hannan FM,Lanzer JD,et al. Medial arterial calcification: JACC state-of-the-art review[J]. J Am Coll Cardiol,2021,78(11):1145-1165.

[30] Park HJ,Kim MK,Kim Y,et al. Neuromedin B modulates phosphate-induced vascular calcification[J]. BMB Rep,2021,54(11):569-574.

[31] Lin X,Li S,Wang YJ,et al. Exosomal Notch3 from high glucose-stimulated endothelial cells regulates vascular smooth muscle cells calcification/aging[J]. Life Sci,2019,232:116582.

[32] Xu SN,Zhou X,Zhu CJ,et al. N?-carboxymethyl-lysine deteriorates vascular calcification in diabetic atherosclerosis induced by vascular smooth muscle cell-derived foam cells[J]. Front Pharmacol,2020,11:626.

[33] Lee GL,Yeh CC,Wu JY,et al. TLR2 Promotes vascular smooth muscle cell chondrogenic differentiation and consequent calcification via the concerted actions of osteoprotegerin suppression and IL-6-mediated RANKL induction[J]. Arterioscler Thromb Vasc Biol,2019,39(3):432-445.

[34] Yang R,Zhu Y,Wang Y,et al. HIF-1α/PDK4/autophagy pathway protects against advanced glycation end-products induced vascular smooth muscle cell calcification[J]. Biochem Biophys Res Commun,2019,517(3):470-476.

[35] Lano G,Burtey S,Sallee M. Indoxyl sulfate,a uremic endotheliotoxin[J]. Toxins (Basel),2020,12(4):229.

[36] Yap C,Mieremet A,de Vries CJM,et al. Six shades of vascular smooth muscle cells illuminated by KLF4 (Krüppel-like factor 4) [J]. Arterioscler Thromb Vasc Biol,2021,41(11):2693-2707.

[37] Chen PY,Qin L,Li G,et al. Smooth muscle cell reprogramming in aortic aneurysms[J]. Cell Stem Cell,2020,26(4):542-557.e11.

[38] Pan HZ,Xue CY,Auerbach BJ,et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human[J]. Circulation,2020,142(21):2060-2075.

[39] Kramann R,Goettsch C,Wongboonsin J,et al. Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease[J]. Cell stem cell,2016,19(5):628-642.

[40] Wang HX,Zhao H,Zhu H,et al. Sca1+ cells minimally contribute to smooth muscle cells in atherosclerosis[J]. Circ Res ,2021,128(1):133-135.

[41] Fujiu K,Manabe I,Ishihara A,et al. Synthetic retinoid Am80 suppresses smooth muscle phenotypic modulation and in-stent neointima formation by inhibiting KLF5[J]. Circ Res,2005,97(11):1132-1141.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(9):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(9):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(9):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(9):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(9):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]

更新日期/Last Update: 2024-10-17