参考文献/References:
[1]Isselbacher EM,Preventza O,Hamilton Black J 3rd,et al. 2022 ACC/AHA Guideline for the diagnosis and management of aortic disease:a report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines[J]. Circulation,2022,146(24):e334-e482.
[2]Clément M,Chappell J,Raffort J,et al. Vascular smooth muscle cell plasticity and autophagy in dissecting aortic aneurysms[J]. Arterioscler Thromb Vasc Biol,2019,39(6):1149-1159.
[3]Qin HL,Bao JH,Tang JJ,et al. Arterial remodeling:the role of mitochondrial metabolism in vascular smooth muscle cells[J]. Am J Physiol Cell Physiol,2023,324(1):C183-C192.
[4]You J,Ouyang S,Xie Z,et al. The suppression of hyperlipid diet-induced ferroptosis of vascular smooth muscle cells protests against atherosclerosis independent of p53/SCL7A11/GPX4 axis[J]. J Cell Physiol,2023,238(8):1891-1908.
[5]Liu S,Huang T,Liu R,et al. Spermidine suppresses development of experimental abdominal aortic aneurysms[J]. J Am Heart Assoc,2020,9(8):e014757.
[6]Kari S,Subramanian K,Altomonte IA,et al. Programmed cell death detection methods:a systematic review and a categorical comparison[J]. Apoptosis,2022,27(7-8):482-508.
[7]Gentle IE. Supramolecular complexes in cell death and inflammation and their regulation by autophagy[J]. Front Cell Dev Biol,2019,7:73.
[8]Lu W,Zhou Y,Zeng S,et al. Loss of FoxO3a prevents aortic aneurysm formation through maintenance of VSMC homeostasis[J]. Cell Death Dis,2021,12(4):378.
[9]Li R,Wei X,Jiang DS. Protein methylation functions as the posttranslational modification switch to regulate autophagy[J]. Cell Mol Life Sci,2019,76(19):3711-3722.
[10]He Y,Yi X,Zhang Z,et al. JIB-04,a histone demethylase Jumonji C domain inhibitor,regulates phenotypic switching of vascular smooth muscle cells[J]. Clin Epigenetics,2022,14(1):101.
[11]Lei L,Zhou Y,Wang T,et al. Activation of AMP-activated protein kinase ablated the formation of aortic dissection by suppressing vascular inflammation and phenotypic switching of vascular smooth muscle cells[J]. Int Immunopharmacol,2022,112:109177.
[12]Ohno-Urabe S,Aoki H,Nishihara M,et al. Role of macrophage Socs3 in the pathogenesis of aortic dissection[J]. J Am Heart Assoc,2018.7(2):e007389.
[13]Yang K,Ren J,Li X,et al. Prevention of aortic dissection and aneurysm via an ALDH2-mediated switch in vascular smooth muscle cell phenotype[J]. Eur Heart J,2020,41(26):2442-2453.
[14]Luo C,Zhou B,Cui Y,et al. ALDH2 knockout protects against aortic dissection[J]. BMC Cardiovasc Disord,2022,22(1):443.
[15]Chen TQ,Hu N,Huo B,et al. EHMT2/G9a inhibits aortic smooth muscle cell death by suppressing autophagy activation[J]. Int J Biol Sci,2020,16(7):1252-1263.
[16]Pistritto G,Trisciuoglio D,Ceci C,et al. Apoptosis as anticancer mechanism:function and dysfunction of its modulators and targeted therapeutic strategies[J]. Aging (Albany NY),2016,8(4):603-619.
[17]D’Arcy MS. Cell death:a review of the major forms of apoptosisnecrosis and autophagy[J]. Cell Biol Int,2019,43(6):582-592.
[18]Xu X,Lai Y,Hua ZC. Apoptosis and apoptotic body:disease message and therapeutic target potentials[J]. Biosci Rep,2019.39(1):BSR20180992..
[19]Chen YY,Hsieh CY,Jayakumar T,et al. Andrographolide induces vascular smooth muscle cell apoptosis through a SHP-1-PP2A-p38MAPK-p53 cascade[J]. Sci Rep,2014,4:5651.
[20]Chakraborty A,Li Y,Zhang C,et al. Programmed cell death in aortic aneurysm and dissection:a potential therapeutic target[J]. J Mol Cell Cardiol,2022,163:67-80.
[21]Jiang N,Zhang X,Gu X,et al. Progress in understanding the role of lncRNA in programmed cell death[J]. Cell Death Discov,2021,7(1):30.
[22]Zhao G,Fu Y,Cai Z,et al. Unspliced XBP1 confers VSMC homeostasis and prevents aortic aneurysm formation via FoxO4 interaction[J]. Circ Res,2017,121(12):1331-1345.
[23]Li P,Jiang M,Li K,et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity[J]. Nat Immunol,2021,22(9):1107-1117.
[24]Shi F,Wang Z,Wu Q,et al. Iron deficiency promotes aortic media degeneration by activating endoplasmic reticulum stress-mediated IRE1 signaling pathway[J]. Pharmacol Res,2022,183:106366.
[25]Li N,Jiang W,Wang W,et al. Ferroptosis and its emerging roles in cardiovascular diseases[J]. Pharmacol Res,2021,166:105466.
[26]Chen Y,Fang ZM,Yi X,et al. The interaction between ferroptosis and inflammatory signaling pathways[J]. Cell Death Dis,2023,14(3):205.
[27]Li N,Yi X,He Y,et al. Targeting ferroptosis as a novel approach to alleviate aortic dissection[J]. Int J Biol Sci,2022,18(10):4118-4134.
[28]Yang M,Luo H,Yi X,et al. The epigenetic regulatory mechanisms of ferroptosis and its implications for biological processes and diseases[J]. MedComm (2020),2023,4(3):e267.
[29]Yu P,Zhang X,Liu N,et al. Pyroptosis:mechanisms and diseases[J]. Signal Transduct Target Ther,2021,6(1):128.
[30]Chen Y,He Y,Wei X,et al. Targeting regulated cell death in aortic aneurysm and dissection therapy[J]. Pharmacol Res,2022,176:106048.
[31]Billingham LK,Stoolman JS,Vasan K,et al. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation[J]. Nat Immunol,2022,23(5):692-704.
[32]Brinkschulte R,Fu?h?ller DM,Hoss F,et al. ATP-binding and hydrolysis of human NLRP3[J]. Commun Biol,2022,5(1):1176.
[33]Ma Q. Pharmacological inhibition of the NLRP3 inflammasome:structure,molecular activation,and inhibitor-NLRP3 interaction[J]. Pharmacol Rev,2023,75(3):487-520.
[34]Coll RC,Hill JR,Day CJ,et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition[J]. Nat Chem Biol,2019,15(6):556-559.
[35]Li Z,Ji S,Jiang ML,et al. The regulation and modification of GSDMD signaling in diseases[J]. Front Immunol,2022,13:893912.
[36]Coll RC,Schroder K,Pelegrín P. NLRP3 and pyroptosis blockers for treating inflammatory diseases[J]. Trends Pharmacol Sci,2022,43(8):653-668.
[37]Yang Z,Shi J,Chen L,et al. Role of pyroptosis and ferroptosis in the progression of atherosclerotic plaques[J]. Front Cell Dev Biol,2022,10:811196.
相似文献/References:
[1]王欣笛,苏冠华. MicroRNA-155在高血压发病机制和治疗中的研究进展[J].心血管病学进展,2020,(10):1040.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.010]
WANG Xindi,SU Guanhua.MicroRNA-155 in Pathogenesis and Treatment of Hypertension[J].Advances in Cardiovascular Diseases,2020,(8):1040.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.010]
[2]肖秋蓓 王志维.急性主动脉夹层并发急性肺损伤研究进展[J].心血管病学进展,2020,(12):1260.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.009]
XIAO QiubeiWANG Zhiwei.Acute Aortic Dissection Complicated with Acute Lung Injury[J].Advances in Cardiovascular Diseases,2020,(8):1260.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.009]
[3]夏平.“8+2”心电图临床价值的研究进展夏平[J].心血管病学进展,2021,(9):800.[doi:【DOI】10.16806/j.cnki.issn.1004-3934.2021.09.009]
XIA Ping.Clinical Value of 8 Plus 2 ECG[J].Advances in Cardiovascular Diseases,2021,(8):800.[doi:【DOI】10.16806/j.cnki.issn.1004-3934.2021.09.009]
[4]蔡宇宸 姚弈伟 陈鑫.ADAMTS家族蛋白与主动脉瘤相关性的研究及进展[J].心血管病学进展,2022,(5):450.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.016]
CAI Yuchen,YAO Yiwei,CHEN Xin.The Association of ADAMTS Family with Aortic Aneurysms[J].Advances in Cardiovascular Diseases,2022,(8):450.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.016]
[5]杨晓晓 王峰 罗善顺 石立力.利拉鲁肽对糖尿病合并动脉粥样硬化模型中骨保护素的影响及机制研究[J].心血管病学进展,2022,(8):753.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.021]
YANG Xiaoxiao,WANG Feng,LUO Shanshun,et al.The effect and Mechanism of Liraglutide on Osteoprotegerin?n Diabetic Atherosclerosis Rat[J].Advances in Cardiovascular Diseases,2022,(8):753.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.021]
[6]郭俊林 顾永林 彭勇.氟喹诺酮类药物增加主动脉瘤和夹层风险的研究进展[J].心血管病学进展,2023,(2):155.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.013]
GUO Junlin,GU Yonglin,PENG Yong.Fluoroquinolones Increased Risk of Aortic Aneurysm and Dissection[J].Advances in Cardiovascular Diseases,2023,(8):155.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.013]
[7]周昌颐 王瑞 沈雳.血管支架植入对血管平滑肌细胞的影响[J].心血管病学进展,2023,(4):299.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.003]
ZHOU Changyi,WANG Rui,SHEN Li.Impact of Vascular Stent Implantation on Vascular Smooth Muscle Cells[J].Advances in Cardiovascular Diseases,2023,(8):299.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.003]
[8]丁姝颖 于子翔 马依彤.线粒体功能障碍与血管钙化发生的研究进展[J].心血管病学进展,2024,(3):253.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.014]
DING Shuying,YU Zixiang,MA Yitong.Research Progress in Mitochondria Dysfunction and the Development of Vascular Calcification[J].Advances in Cardiovascular Diseases,2024,(8):253.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.014]
[9]周强 曹勖 王睿.血管平滑肌细胞线粒体与腹主动脉瘤发生发展的研究进展[J].心血管病学进展,2024,(5):442.[doi:10.16806/j.cnki.issn.1004-3934.2024.05.014]
ZHOU Qiang,CAO Xu,WANG Rui.Vascular Smooth Muscle Cell Mitochondria and Abdominal Aortic Aneurysm Formation and Development[J].Advances in Cardiovascular Diseases,2024,(8):442.[doi:10.16806/j.cnki.issn.1004-3934.2024.05.014]
[10]李旭 王志维.CTRP2与主动脉夹层发生的相关性研究[J].心血管病学进展,2024,(5):476.[doi:10.16806/j.cnki.issn.1004-3934.2024.05.020]
LI Xu,WANG Zhiwei.Correlation Between CTRP2 and the Occurrence of Aortic Dissection[J].Advances in Cardiovascular Diseases,2024,(8):476.[doi:10.16806/j.cnki.issn.1004-3934.2024.05.020]