[1]常姝烨 安恬慧 王朝晖.T细胞代谢重编程调控动脉粥样硬化进程的作用及机制研究[J].心血管病学进展,2024,(9):811.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.010]
 CHANG Shuye,AN Tianhui,WANG Zhaohui.The Role and Mechanism of T Cell Metabolic Reprogramming in the Regulation of Atherosclerosis Progression[J].Advances in Cardiovascular Diseases,2024,(9):811.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.010]
点击复制

T细胞代谢重编程调控动脉粥样硬化进程的作用及机制研究()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年9期
页码:
811
栏目:
综述
出版日期:
2024-09-25

文章信息/Info

Title:
The Role and Mechanism of T Cell Metabolic Reprogramming in the Regulation of Atherosclerosis Progression
作者:
常姝烨 安恬慧 王朝晖
(华中科技大学同济医学院附属协和医院老年科,湖北 武汉 430000)
Author(s):
CHANG ShuyeAN TianhuiWANG Zhaohui
(Department of Geriatrics,Union Hospital Tongji Medical College Huazhong University of Science and Technology,Wuhan 430000,Hubei,China)
关键词:
动脉粥样硬化T细胞代谢重编程信号通路
Keywords:
AtherosclerosisT cellMetabolic reprogrammingSignal pathway
DOI:
10.16806/j.cnki.issn.1004-3934.2024.09.010
摘要:
动脉粥样硬化是多种心血管疾病的病理学基础,而T细胞则是其发生发展过程中的重要免疫细胞。T细胞可极化成不同的表型,在动脉粥样硬化发展过程中发挥相应的功能,如Th1和Th17细胞具有促炎性作用,而Th2和Treg细胞具有抑炎性作用,不同的T细胞亚群比例和功能失衡也是动脉粥样硬化斑块形成与发展的重要原因。在不同的微环境中代谢重编程通过调节代谢途径来而改变T细胞的分化方向,进而改变动脉粥样硬化的发展方向。现就T细胞在动脉粥样硬化中的促炎与抑炎作用做一综述,重点介绍促炎性或抑炎性T细胞的代谢重编程对动脉粥样硬化的调控及其mTOR和AMPK信号转导的分子机制。
Abstract:
Atherosclerosis is the pathological basis of a variety of cardiovascular diseases,and T cells are important immune cells in the process of its development. T cells can be polarized into different phenotypes and play corresponding roles in the development of atherosclerosis. For example, Th1 and Th17 cells have pro-inflammatory effects, while Th2 and Treg cells have anti-inflammatory effects. The proportion and functional imbalance of different T cell subsets are also important reasons for the formation and development of atherosclerotic plaques. Metabolic reprogramming changes the differentiation direction of T cells by regulating metabolic pathways in different microenvironments,thereby changing the development direction of atherosclerosis. This article reviews the proinflammatory and anti-inflammatory roles of T cells in atherosclerosis,focusing on the regulation of atherosclerosis by metabolic reprogramming of proinflammatory/anti-inflammatory T cells and the molecular mechanisms underlying mTOR and AMPK signaling.

参考文献/References:

[1] Libby P. The changing landscape of atherosclerosis[J]. Nature,2021,592(7855):524-533.

[2] Saigusa R,Winkels H,Ley K. T cell subsets and functions in atherosclerosis[J]. Nat Rev Cardiol,2020,17(7):387-401.

[3] Wik JA,Sk?lhegg BS. T Cell Metabolism in infection[J]. Front Immunol,2022,13:840610.

[4] Madden MZ,Rathmell JC. The Complex integration of T-cell metabolism and immunotherapy[J]. Cancer Discov,2021,11(7):1636-1643.

[5] Aso K,Kono M,Kanda M,et al. Itaconate ameliorates autoimmunity by modulating T cell imbalance via metabolic and epigenetic reprogramming[J]. Nat Commun,2023,14(1):984.

[6] Chen J,Xiang X,Nie L,et al. The emerging role of Th1 cells in atherosclerosis and its implications for therapy[J]. Front Immunol,2023,13:1079668.

[7] Lee S,Bartlett B,Dwivedi G. Adaptive immune responses in human atherosclerosis[J]. Int J Mol Sci,2020,21(23):9322.

[8] Fernandez DM,Rahman AH,Fernandez NF,et al. Single-cell immune landscape of human atherosclerotic plaques[J]. Nat Med,2019,25(10):1576-1588.

[9] Wang F,Li Y,Yang Z,et al. Targeting IL-17A enhances imatinib efficacy in Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia[J]. Nat Commun,2024,15(1):203.

[10] Zeng J,Li M,Zhao Q,et al. Small molecule inhibitors of RORγt for Th17 regulation in inflammatory and autoimmune diseases[J]. J Pharm Anal,2023,13(6):545-562.

[11] Lin M,Wang B,Wei B,et al. Characteristics,prognostic determinants of monocytes,macrophages and T cells in acute coronary syndrome:protocol for a multicenter,prospective cohort study[J]. BMC Cardiovasc Disord,2023,23(1):220.

[12] Durham SR,Shamji MH. Allergen immunotherapy:past,present and future[J]. Nat Rev Immunol,2023,23(5):317-328.

[13] Dikiy S,Rudensky AY. Principles of regulatory T?cell function[J]. Immunity,2023,56(2):240-255.

[14] Wolf D,Gerhardt T,Winkels H,et al. Pathogenic autoimmunity in atherosclerosis evolves from initially protective apolipoprotein B100-reactive CD4+T-regulatory cells[J]. Circulation,2020,142(13):1279-1293.

[15] Li YJ,Zhang C,Martincuks A,et al. STAT proteins in cancer:orchestration of metabolism [J]. Nat Rev Cancer,2023,23(3):115-134.

[16] Hinkley H,Counts DA,VonCanon E,et al. T Cells in atherosclerosis:key players in the pathogenesis of vascular disease[J]. Cells,2023,12(17):2152.

[17] Zhong X,He X,Wang Y,et al. Warburg effect in colorectal cancer:the emerging roles in tumor microenvironment and therapeutic implications[J]. J Hematol Oncol,2022,15(1):160.

[18] Bian X,Jiang H,Meng Y,et al. Regulation of gene expression by glycolytic and gluconeogenic enzymes[J]. Trends Cell Biol,2022,32(9):786-799.

[19] Hayes JD,Dinkova-Kostova AT,Tew KD. Oxidative stress in cancer[J]. Cancer Cell,2020,38(2):167-197.

[20] Guertin DA,Wellen KE. Acetyl-CoA metabolism in cancer[J]. Nat Rev Cancer,2023,23(3):156-172.

[21] Almeida L,Dhillon-LaBrooy A,Carriche G,et al. CD4+ T-cell differentiation and function: unifying glycolysis,fatty acid oxidation,polyamines NAD mitochondria[J]. J Allergy Clin Immunol,2021,148(1):16-32.

[22] Xu R,Yuan W,Wang Z. Advances in glycolysis metabolism of atherosclerosis[J]. J Cardiovasc Transl Res,2023,16(2):476-490.

[23] McGettrick AF,O’Neill LAJ. The Role of HIF in immunity and inflammation[J]. Cell Metab,2020,32(4):524-536.

[24] Morianos I,Trochoutsou AI,Papadopoulou G,et al. Activin-A limits Th17 pathogenicity and autoimmune neuroinflammation via CD39 and CD73 ectonucleotidases and Hif1-α -dependent pathways[J]. Proc Natl Acad Sci U S A,2020,117(22):12269-12280.

[25] Aguilar-Ballester M,Herrero-Cervera A,Vinué ?,et al. Impact of cholesterol metabolism in immune cell function and atherosclerosis[J]. Nutrients,2020,12(7):2021.

[26] Han A,Peng T,Xie Y,et al. Mitochondrial-regulated tregs:potential therapeutic targets for autoimmune diseases of the central nervous system[J].Front Immunol,2023,14:1301074.

[27] Wang H,Zhang H,Wang Y,et al. Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis[J]. J Hepatol,2021,75(6):1271-1283.

[28] Shan J,Jin H,Xu Y. T cell metabolism:a new perspective on Th17/Treg cell imbalance in systemic lupus erythematosus[J]. Front Immunol,2020,11:1027.

[29] Wagner A,Wang C,Fessler J,et al. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity[J]. Cell,2021,184(16):4168-4185.e21.

[30] Prado DS,Damasceno LEA,Sonego AB,et al. Pitavastatin ameliorates autoimmune neuroinflammation by regulating the Treg/Th17 cell balance through inhibition of mevalonate metabolism[J]. Int Immunopharmacol,2021,91:107278.

[31] Kabat AM,Hackl A,Sanin DE,et al. Resident TH 2 cells orchestrate adipose tissue remodeling at a site adjacent to infection [J]. Sci Immunol,2022,7(76):eadd3263.

[32] Yang J,Chen Y,Li X,et al. Complex interplay between metabolism and CD4+ T- cell activation,differentiation,and function:a novel perspective for atherosclerosis immunotherapy[J]. Cardiovasc Drugs Ther,2023 May 18. DOI:10.1007/s10557-023-07466-9.

[33] Miska J,Lee-Chang C,Rashidi A,et al. HIF-1α is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of tregs in glioblastoma[J]. Cell Rep,2022,39(10):110934.

[34] Song X,Sun X,Oh SF,et al. Microbial bile acid metabolites modulate gut RORγ+?regulatory T cell homeostasis[J]. Nature,2020,577(7790):410-415.

[35] Kim BK,Hong SJ,Lee YJ,et al. Long-term efficacy and safety of moderate-intensity statin with ezetimibe combination therapy versus high-intensity statin monotherapy in patients with atherosclerotic cardiovascular disease (RACING):a randomised,open-label,non-inferiority trial[J]. Lancet,2022,400(10349):380-390.

[36] Liu GY,Sabatini DM. mTOR at the nexus of nutrition,growth,ageing and disease [J]. Nat Rev Mol Cell Biol,2020,21(4):183-203.

[37] Battaglioni S,Benjamin D,W?lchli M,et al. mTOR substrate phosphorylation in growth control[J]. Cell,2022,185(11):1814-1836.

[38] Li Q,Wang Y,Wu S,et al. CircACC1 regulates assembly and activation of AMPK complex under metabolic stress[J]. Cell Metabolism,2019,30(1):157-173.e7.

[39] Ma J,Hu W,Liu Y,et al. CD226 maintains regulatory T?cell phenotype stability and metabolism by the mTOR/Myc pathway under inflammatory conditions[J]. Cell Rep,2023,42(10):113306.

[40] Steinberg GR,Hardie DG. New insights into activation and function of the AMPK[J]. Nat Rev Mol Cell Biol,2023,24(4):255-272.

[41] Lee H,Zandkarimi F,Zhang Y,et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol,2020,22(2):225-234.

[42] Zhao Q,Duck LW,Huang F,et al. CD4+ T cell activation and concomitant mTOR metabolic inhibition can ablate microbiota-specific memory cells and prevent colitis[J] . Sci Immunol,2020,5(54):eabc6373.

[43] Mayer KA,Smole U,Zhu C,et al. The energy sensor AMPK orchestrates metabolic and translational adaptation in expanding T helper cells[J]. FASEB J,2021,35(4):e21217.

[44] Luo Y,Guo J,Zhang P,et al. Mesenchymal stem cell protects injured renal tubular epithelial cells by regulating mTOR-mediated Th17/Treg axis[J]. Front Immunol,2021,12:684197.

[45] Baixauli F,Piletic K,Puleston DJ,et al. An LKB1-mitochondria axis controls T H17 effector function[J]. Nature,2022,610(7932):555-561.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(9):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(9):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(9):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(9):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(9):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]

更新日期/Last Update: 2024-10-17