参考文献/References:
[1] Libby P. The changing landscape of atherosclerosis[J]. Nature,2021,592(7855):524-533.
[2] Saigusa R,Winkels H,Ley K. T cell subsets and functions in atherosclerosis[J]. Nat Rev Cardiol,2020,17(7):387-401.
[3] Wik JA,Sk?lhegg BS. T Cell Metabolism in infection[J]. Front Immunol,2022,13:840610.
[4] Madden MZ,Rathmell JC. The Complex integration of T-cell metabolism and immunotherapy[J]. Cancer Discov,2021,11(7):1636-1643.
[5] Aso K,Kono M,Kanda M,et al. Itaconate ameliorates autoimmunity by modulating T cell imbalance via metabolic and epigenetic reprogramming[J]. Nat Commun,2023,14(1):984.
[6] Chen J,Xiang X,Nie L,et al. The emerging role of Th1 cells in atherosclerosis and its implications for therapy[J]. Front Immunol,2023,13:1079668.
[7] Lee S,Bartlett B,Dwivedi G. Adaptive immune responses in human atherosclerosis[J]. Int J Mol Sci,2020,21(23):9322.
[8] Fernandez DM,Rahman AH,Fernandez NF,et al. Single-cell immune landscape of human atherosclerotic plaques[J]. Nat Med,2019,25(10):1576-1588.
[9] Wang F,Li Y,Yang Z,et al. Targeting IL-17A enhances imatinib efficacy in Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia[J]. Nat Commun,2024,15(1):203.
[10] Zeng J,Li M,Zhao Q,et al. Small molecule inhibitors of RORγt for Th17 regulation in inflammatory and autoimmune diseases[J]. J Pharm Anal,2023,13(6):545-562.
[11] Lin M,Wang B,Wei B,et al. Characteristics,prognostic determinants of monocytes,macrophages and T cells in acute coronary syndrome:protocol for a multicenter,prospective cohort study[J]. BMC Cardiovasc Disord,2023,23(1):220.
[12] Durham SR,Shamji MH. Allergen immunotherapy:past,present and future[J]. Nat Rev Immunol,2023,23(5):317-328.
[13] Dikiy S,Rudensky AY. Principles of regulatory T?cell function[J]. Immunity,2023,56(2):240-255.
[14] Wolf D,Gerhardt T,Winkels H,et al. Pathogenic autoimmunity in atherosclerosis evolves from initially protective apolipoprotein B100-reactive CD4+T-regulatory cells[J]. Circulation,2020,142(13):1279-1293.
[15] Li YJ,Zhang C,Martincuks A,et al. STAT proteins in cancer:orchestration of metabolism [J]. Nat Rev Cancer,2023,23(3):115-134.
[16] Hinkley H,Counts DA,VonCanon E,et al. T Cells in atherosclerosis:key players in the pathogenesis of vascular disease[J]. Cells,2023,12(17):2152.
[17] Zhong X,He X,Wang Y,et al. Warburg effect in colorectal cancer:the emerging roles in tumor microenvironment and therapeutic implications[J]. J Hematol Oncol,2022,15(1):160.
[18] Bian X,Jiang H,Meng Y,et al. Regulation of gene expression by glycolytic and gluconeogenic enzymes[J]. Trends Cell Biol,2022,32(9):786-799.
[19] Hayes JD,Dinkova-Kostova AT,Tew KD. Oxidative stress in cancer[J]. Cancer Cell,2020,38(2):167-197.
[20] Guertin DA,Wellen KE. Acetyl-CoA metabolism in cancer[J]. Nat Rev Cancer,2023,23(3):156-172.
[21] Almeida L,Dhillon-LaBrooy A,Carriche G,et al. CD4+ T-cell differentiation and function: unifying glycolysis,fatty acid oxidation,polyamines NAD mitochondria[J]. J Allergy Clin Immunol,2021,148(1):16-32.
[22] Xu R,Yuan W,Wang Z. Advances in glycolysis metabolism of atherosclerosis[J]. J Cardiovasc Transl Res,2023,16(2):476-490.
[23] McGettrick AF,O’Neill LAJ. The Role of HIF in immunity and inflammation[J]. Cell Metab,2020,32(4):524-536.
[24] Morianos I,Trochoutsou AI,Papadopoulou G,et al. Activin-A limits Th17 pathogenicity and autoimmune neuroinflammation via CD39 and CD73 ectonucleotidases and Hif1-α -dependent pathways[J]. Proc Natl Acad Sci U S A,2020,117(22):12269-12280.
[25] Aguilar-Ballester M,Herrero-Cervera A,Vinué ?,et al. Impact of cholesterol metabolism in immune cell function and atherosclerosis[J]. Nutrients,2020,12(7):2021.
[26] Han A,Peng T,Xie Y,et al. Mitochondrial-regulated tregs:potential therapeutic targets for autoimmune diseases of the central nervous system[J].Front Immunol,2023,14:1301074.
[27] Wang H,Zhang H,Wang Y,et al. Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis[J]. J Hepatol,2021,75(6):1271-1283.
[28] Shan J,Jin H,Xu Y. T cell metabolism:a new perspective on Th17/Treg cell imbalance in systemic lupus erythematosus[J]. Front Immunol,2020,11:1027.
[29] Wagner A,Wang C,Fessler J,et al. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity[J]. Cell,2021,184(16):4168-4185.e21.
[30] Prado DS,Damasceno LEA,Sonego AB,et al. Pitavastatin ameliorates autoimmune neuroinflammation by regulating the Treg/Th17 cell balance through inhibition of mevalonate metabolism[J]. Int Immunopharmacol,2021,91:107278.
[31] Kabat AM,Hackl A,Sanin DE,et al. Resident TH 2 cells orchestrate adipose tissue remodeling at a site adjacent to infection [J]. Sci Immunol,2022,7(76):eadd3263.
[32] Yang J,Chen Y,Li X,et al. Complex interplay between metabolism and CD4+ T- cell activation,differentiation,and function:a novel perspective for atherosclerosis immunotherapy[J]. Cardiovasc Drugs Ther,2023 May 18. DOI:10.1007/s10557-023-07466-9.
[33] Miska J,Lee-Chang C,Rashidi A,et al. HIF-1α is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of tregs in glioblastoma[J]. Cell Rep,2022,39(10):110934.
[34] Song X,Sun X,Oh SF,et al. Microbial bile acid metabolites modulate gut RORγ+?regulatory T cell homeostasis[J]. Nature,2020,577(7790):410-415.
[35] Kim BK,Hong SJ,Lee YJ,et al. Long-term efficacy and safety of moderate-intensity statin with ezetimibe combination therapy versus high-intensity statin monotherapy in patients with atherosclerotic cardiovascular disease (RACING):a randomised,open-label,non-inferiority trial[J]. Lancet,2022,400(10349):380-390.
[36] Liu GY,Sabatini DM. mTOR at the nexus of nutrition,growth,ageing and disease [J]. Nat Rev Mol Cell Biol,2020,21(4):183-203.
[37] Battaglioni S,Benjamin D,W?lchli M,et al. mTOR substrate phosphorylation in growth control[J]. Cell,2022,185(11):1814-1836.
[38] Li Q,Wang Y,Wu S,et al. CircACC1 regulates assembly and activation of AMPK complex under metabolic stress[J]. Cell Metabolism,2019,30(1):157-173.e7.
[39] Ma J,Hu W,Liu Y,et al. CD226 maintains regulatory T?cell phenotype stability and metabolism by the mTOR/Myc pathway under inflammatory conditions[J]. Cell Rep,2023,42(10):113306.
[40] Steinberg GR,Hardie DG. New insights into activation and function of the AMPK[J]. Nat Rev Mol Cell Biol,2023,24(4):255-272.
[41] Lee H,Zandkarimi F,Zhang Y,et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol,2020,22(2):225-234.
[42] Zhao Q,Duck LW,Huang F,et al. CD4+ T cell activation and concomitant mTOR metabolic inhibition can ablate microbiota-specific memory cells and prevent colitis[J] . Sci Immunol,2020,5(54):eabc6373.
[43] Mayer KA,Smole U,Zhu C,et al. The energy sensor AMPK orchestrates metabolic and translational adaptation in expanding T helper cells[J]. FASEB J,2021,35(4):e21217.
[44] Luo Y,Guo J,Zhang P,et al. Mesenchymal stem cell protects injured renal tubular epithelial cells by regulating mTOR-mediated Th17/Treg axis[J]. Front Immunol,2021,12:684197.
[45] Baixauli F,Piletic K,Puleston DJ,et al. An LKB1-mitochondria axis controls T H17 effector function[J]. Nature,2022,610(7932):555-561.
相似文献/References:
[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(9):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(9):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(9):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(9):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(9):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]