参考文献/References:
[1] Xu S,Ilyas I,Little PJ,et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond:from mechanism to pharmacotherapies[J]. Pharmacol Rev,2021,73(3):924-967.
[2] Battson ML,Lee DM,Jarrell DK,et al. Suppression of gut dysbiosis reverses Western diet-induced vascular dysfunction[J]. Am J Physiol Endocrinol Metab,2018,314(5):E468-E477.
[3] Zhang Q,Liu J,Duan H,et al. Activation of Nrf2/HO-1 signaling:an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress[J]. J Adv Res,2021,34:43-63.
[4] Querio G,Antoniotti S,Geddo F,et al. Modulation of endothelial function by TMAO,a gut microbiota-derived metabolite[J]. Int J Mol Sci,2023,24(6):5806.
[5] Amedei A,Morbidelli L. Circulating metabolites originating from gut microbiota control endothelial cell function[J]. Molecules,2019,24(21):3992.
[6] Vanhoutte PM,Shimokawa H,Feletou M,et al. Endothelial dysfunction and vascular disease—A 30th anniversary update[J]. Acta Physiol (Oxf),2017,219(1):22-96.
[7] Tenopoulou M,Doulias P-T. Endothelial nitric oxide synthase-derived nitric oxide in the regulation of metabolism[J]. F1000Res,2020,9:F1000 Faculty Rev-1190.
[8] Barko PC,Mcmichael MA,Swanson KS,et al. The gastrointestinal microbiome:a review[J]. J Vet Intern Med,2018,32(1):9-25.
[9] Eckburg PB,Bik EM,Bernstein CN,et al. Diversity of the human intestinal microbial flora[J]. Science,2005,308(5728):1635-1638.
[10] Maiuolo J,Carresi C,Gliozzi M,et al. The contribution of gut microbiota and endothelial dysfunction in the development of arterial hypertension in animal models and in humans[J]. Int J Mol Sci,2022,23(7):3698.
[11] Cortés-Martín A,Iglesias-Aguirre CE,Meoro A,et al. There is no distinctive gut microbiota signature in the metabolic syndrome:contribution of cardiovascular disease risk factors and associated medication[J]. Microorganisms,2020,8(3):416.
[12] Kazemian N,Mahmoudi M,Halperin F,et al. Gut microbiota and cardiovascular disease:opportunities and challenges[J]. Microbiome,2020,8(1):36.
[13] Jin M,Qian Z,Yin J,et al. The role of intestinal microbiota in cardiovascular disease[J]. J Cell Mol Med,2019,23(4):2343-2350.
[14] Cui L,Zhao T,Hu H,et al. Association study of gut flora in coronary heart disease through high-throughput sequencing[J]. Biomed Res Int,2017,2017:3796359.
[15] Chen YH,Yuan W,Meng LK,et al. The role and mechanism of gut microbiota in pulmonary arterial hypertension[J]. Nutrients,2022,14(20):4278.
[16] Tsutsumi R,Yamasaki Y,Takeo J,et al. Long-chain monounsaturated fatty acids improve endothelial function with altering microbial flora[J]. Transl Res,2021,237:16-30.
[17] Malik M,Suboc TM,Tyagi S,et al. Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease[J]. Circ Res,2018,123(9):1091-1102.
[18] Hemmati M,Kashanipoor S,Mazaheri P,et al. Importance of gut microbiota metabolites in the development of cardiovascular diseases (CVD)[J]. Life Sci,2023,329:121947.
[19] Li M,van Esch BCAM,Wagenaar GTM,et al. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells[J]. Eur J Pharmacol,2018,831:52-59.
[20] Brown JM,Hazen SL. Microbial modulation of cardiovascular disease[J]. Nat Rev Microbiol,2018,16(3):171-181.
[21] Gou X,Qin L,Wu D,et al. Research progress of Takeda G protein-coupled receptor 5 in metabolic syndrome[J]. Molecules,2023,28(15):5870.
[22] Guizoni DM,Vettorazzi JF,Carneiro EM,et al. Modulation of endothelium-derived nitric oxide production and activity by taurine and taurine-conjugated bile acids[J]. Nitric Oxide,2020,94:48-53.
[23] Walsh LK,Restaino RM,Neuringer M,et al. Administration of tauroursodeoxycholic acid prevents endothelial dysfunction caused by an oral glucose load[J]. Clin Sci (Lond),2016,130(21):1881-1888.
[24] Paeslack N,Mimmler M,Becker S,et al. Microbiota-derived tryptophan metabolites in vascular inflammation and cardiovascular disease[J]. Amino Acids,2022,54(10):1339-1356.
[25] Lu Y,Yang W,Qi Z,et al. Gut microbe-derived metabolite indole-3-carboxaldehyde alleviates atherosclerosis[J]. Signal Transduct Target Ther,2023,8(1):378.
[26] Scott SA,Fu J,Chang PV,et al. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor[J]. Proc Natl Acad Sci U S A,2020,117(32):19376-19387.
[27] Nguyen C,Edgley AJ,Kelly DJ,et al. Aryl hydrocarbon receptor inhibition restores indoxyl sulfate-mediated endothelial dysfunction in rat aortic rings[J]. Toxins (Basel),2022,14(2):100.
[28] Liu Y,Dai M. Trimethylamine N-oxide generated by the gut microbiota is associated with vascular inflammation:new insights into atherosclerosis[J]. Mediators Inflamm,2020,2020:4634172.
[29] Brunt VE,Gioscia-Ryan RA,Casso AG,et al. Trimethylamine-N-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans[J]. Hypertension,2020,76(1):101-112.
[30] Nemet I,Saha PP,Gupta N,et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors[J]. Cell,2020,180(5):862-877.
[31] Chistiakov DA,Bobryshev YV,Kozarov E,et al. Role of gut microbiota in the modulation of atherosclerosis-associated immune response[J]. Front Microbiol,2015,6:671.
[32] Zhao J,Liu Z,Chang Z. Lipopolysaccharide induces vascular endothelial cell pyroptosis via the SP1/RCN2/ROS signaling pathway[J]. Eur J Cell Biol,2021,100(4):151164.
[33] Matsumoto T,Kojima M,Takayanagi K,et al. Role of S-equol,indoxyl sulfate,and trimethylamine N-oxide on vascular function[J]. Am J Hypertens,2020,33(9):793-803.
[34] Kumar T,Dutta RR,Velagala VR,et al. Analyzing the complicated connection between intestinal microbiota and cardiovascular diseases[J]. Cureus,2022,14(8):e28165.
[35] Omori K,Katakami N,Arakawa S,et al. Identification of plasma inositol and indoxyl sulfate as novel biomarker candidates for atherosclerosis in patients with type 2 diabetes—Findings from metabolome analysis using GC/MS[J]. J Atheroscler Thromb, 2020 , 27(10) : 1053-1067.
相似文献/References:
[1]杨娟,综述,王佑华,等.肠道菌群与血管内炎症[J].心血管病学进展,2016,(3):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
YANG Juan,WANG Youhua,YUAN Suyun.Relationship Between Gut Microbiota and Vascular Inflammation[J].Advances in Cardiovascular Diseases,2016,(2):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
[2]刘欢,刘润冬,综述,等.血管内皮功能的评价及其临床价值[J].心血管病学进展,2016,(4):426.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.026]
LIU Huan,LIU Rundong,WANG Hongyu.Evaluation of Vascular Endothelial Function and Its Clinical Value[J].Advances in Cardiovascular Diseases,2016,(2):426.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.026]
[3]张琪 宋晓鹏 任茂佳 吴广 赵兴胜.氧化三甲胺与心血管疾病的研究新进展[J].心血管病学进展,2020,(1):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
ZHANG Qi,SONG Xiaopeng,REN Maojia,et al.Trimethylamine Oxide and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(2):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
[4]李靖,任彭,努尔比耶·买买提,等.三甲胺-N-氧化物与冠心病和心力衰竭的研究进展[J].心血管病学进展,2020,(3):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
LI Jing,REN Peng,Nuerbiye·Maimaiti,et al.Trimethylamine-N-oxide and Coronary Heart Disease and Heart Failure[J].Advances in Cardiovascular Diseases,2020,(2):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
[5]王猛 江洪.肠道菌群及其代谢产物与心房颤动的研究进展[J].心血管病学进展,2022,(3):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
WANG Meng,JIANG Hong.Gut Microbiota an d Its Metabolites in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(2):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[6].肠-脑轴与心血管疾病的研究进展[J].心血管病学进展,2022,(7):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
TAN Wuping,W ANG Meng,ZHOU Xiaoya.Gut-Brain Axis and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(2):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[7]刘杏利 高中山 段豪亮 赵奕 马玉兰.肠道菌群及其代谢物与心律失常关系的研究进展[J].心血管病学进展,2022,(11):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]
LIU Xingli,GAO Zhongshan,DUAN Haoliang,et al.The Relationship Between Intestinal Flora and Its Metabolites and Arrhythmia[J].Advances in Cardiovascular Diseases,2022,(2):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]
[8]张嘉原 张莉.果糖代谢与血脂异常的研究进展[J].心血管病学进展,2022,(12):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
ZHANG Jiayuan ZHANG Li.Fructose Metabolism and DyslipidemiaA Systematic Review[J].Advances in Cardiovascular Diseases,2022,(2):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
[9]卢燕 刘亚萍 罗强 张全波 汪汉.肠道菌群及其代谢物与痛风[J].心血管病学进展,2023,(2):177.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.018]
LU Yan,LIU Yaping,LUO Qiang,et al.Intestinal Flora and Its Metabolites and Gout[J].Advances in Cardiovascular Diseases,2023,(2):177.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.018]
[10]蒋振江 刘富强 王军奎.肠道菌群与肥胖的关系研究进展[J].心血管病学进展,2023,(3):265.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.017]
JIANG Zhenjiang,LIU Fuqiang,WANG Junkui.The Relationship Between Gut Microbiota and Obesity[J].Advances in Cardiovascular Diseases,2023,(2):265.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.017]