[1]王清 梁小燕 芦颜美.神经免疫的交互作用在心力衰竭发生发展中机制的研究进展[J].心血管病学进展,2023,(11):1001.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.010]
 WANG Qing,LIANG Xiaoyan,LU Yanmei.Mechanism of Neuroimmune Crosstalk in Occurrence and Development of Heart Failure[J].Advances in Cardiovascular Diseases,2023,(11):1001.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.010]
点击复制

神经免疫的交互作用在心力衰竭发生发展中机制的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年11期
页码:
1001
栏目:
综述
出版日期:
2023-11-25

文章信息/Info

Title:
Mechanism of Neuroimmune Crosstalk in Occurrence and Development of Heart Failure
作者:
王清 梁小燕 芦颜美
(新疆医科大学第一附属医院心脏中心起搏电生理科/新疆心电生理与心脏重塑重点实验室,新疆 乌鲁木齐 830054)
Author(s):
WANG QingLIANG XiaoyanLU Yanmei
(Department of Pacing and Electrophysiology,The First Affiliated Hospital of Xinjiang Medical University,Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling,Urumqi 830054,Xinjiang,China)
关键词:
心力衰竭神经免疫交互作用自主神经
Keywords:
Heart failureNeuroimmune crosstalkAutonomic nerve
DOI:
10.16806/j.cnki.issn.1004-3934.2023.11.010
摘要:
心力衰竭是多种心血管疾病的终末阶段,是一种复杂的临床综合征。心力衰竭时存在自主神经失衡与免疫调节紊乱,二者存在交互作用,免疫细胞可以表达神经递质,自主神经激活后通过神经递质作用于免疫细胞,可调节细胞炎症因子的释放。神经免疫交互作用参与并维持心力衰竭的发生发展。现总结有关心力衰竭神经免疫交互作用的现有知识及临床应用进展,为进一步研究提供支持性的合理背景。
Abstract:
Heart failure is the end stage of several cardiovascular diseases and is a complex clinical syndrome. In heart failure,there is an imbalance of autonomic nervous system and immune regulation disorder,which interact with each other. Immune cells can express neurotransmitters,and after activation of autonomic nervous system,neurotransmitters act on immune cells to regulate the release of cellular inflammatory factors. Neuroimmune crosstalk participates in and maintain the occurrence and development of heart failure. This review summarizes the existing knowledge and clinical application progress of neuroimmune crosstalk in heart failure,and provides a supportive and rational background for further research

参考文献/References:

[1] Grosman-Rimon L,Billia F,Wright E,et al. Neurohormones,inflammatory mediators,and cardiovascular injury in the setting of heart failure[J]. Heart Fail Rev,2020,25(5):685-701.

[2] Besedovsky H,Sorkin E. Network of immune-neuroendocrine interactions[J]. Clin Exp Immunol,1977,27(1):1-12.

[3] Mannozzi J,Al-Hassan MH,Kaur J,et al. Ventricular-vascular uncoupling in heart failure:effects of arterial baroreflex-induced sympathoexcitation at rest and during exercise[J]. Front Physiol,2022,13:835951.

[4] Oshaghi M,Kourosh-Arami M,Roozbehkia M. Role of neurotransmitters in immune-mediated inflammatory disorders:a crosstalk between the nervous and immune systems[J]. Neurol Sci,2023,44(1):99-113.

[5] Levite M. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors[J]. Curr Opin Pharmacol,2008,8(4):460-471.

[6] Hodo TW,de Aquino MTP,Shimamoto A,et al. Critical neurotransmitters in the neuroimmune network[J]. Front Immunol,2020,11:1869.

[7] Dehlin HM,Levick SP. Substance P in heart failure:the good and the bad[J]. Int J Cardiol,2014,170(3):270-277.

[8] Moratal C,Laurain A,Na?mi M,et al. Regulation of monocytes/macrophages by the renin-angiotensin system in d iabetic nephropathy:state of the art and results of a pilot study[J]. Int J Mol Sci,2021,22(11):6009.

[9] Wu YJ,Wang L,Ji CF,et al. The role of α7nAChR-mediated cholinergic anti-inflammatory pathway in immune cells[J]. Inflammation,2021,44(3):821-834.

[10] Karmakar S,Lal G. Role of serotonin receptor signaling in cancer cells and anti-tumor immunity[J]. Theranostics,2021,11(11):5296-5312.

[11] Sharma D,Farrar JD. Adrenergic regulation of immune cell function and inflammation[J]. Semin Immunopathol,2020,42(6):709-717.

[12] Guereschi MG,Araujo LP,Maricato JT,et al. Beta2-adrenergic receptor signaling in CD4+ Foxp3+ regulatory T cells enhances their suppressive function in a PKA-dependent manner[J]. Eur J Immunol,2013,43(4):1001-1012.

[13] Kenney MJ,Ganta CK. Autonomic nervous system and immune system interactions[J]. Compr Physiol,2014,4(3):1177-1200.

[14] de Angelis E,Pecoraro M,Rusciano MR,et al. Cross-talk between neurohormonal pathways and the immune system in heart failure:a review of the literature[J]. Int J Mol Sci,2019,20(7):1698.

[15] Kelly MJ,Breathnach C,Tracey KJ,et al. Manipulation of the inflammatory reflex as a therapeutic strategy[J]. Cell Rep Med,2022,3(7):100696.

[16] Gao XM,Tsai A,Al-Sharea A,et al. Inhibition of the renin-angiotensin system post myocardial infarction prevents inflammation-associated acute cardiac rupture[J]. Cardiovasc Drugs Ther,2017,31(2):145-156.

[17] Belali OM,Ahmed MM,Mohany M,et al. LCZ696 protects against diabetic cardiomyopathy-induced myocardial inflammation,ER stress,and apoptosis through inhibiting AGEs/NF-κB and PERK/CHOP signaling pathways[J]. Int J Mol Sci,2022,23(3):1288.

[18] Li B,Liao YH,Cheng X,et al. Effects of carvedilol on cardiac cytokines expression and remodeling in rat with acute myocardial infarction[J]. Int J Cardiol,2006,111(2):247-255.

[19] Xiao H,Song Y,Li Y,et al. Qiliqiangxin regulates the balance between tumor necrosis factor-α and interleukin-10 and improves cardiac function in rats with myocardial infarction[J]. Cell Immunol,2009,260(1):51-55.

[20] Wang J,Yu Q,Dai M,et al. Carotid baroreceptor stimulation improves cardiac performance and reverses ventricular remodelling in canines with pacing-induced heart failure[J]. Life Sci,2019,222:13-21.

[21] Lipov E,Gluncic V,Luki? IK,et al. How does stellate ganglion block alleviate immunologically-linked disorders?[J]. Med Hypotheses,2020,144:110000.

[22] Zhang D,Hu W,Tu H,et al. Macrophage depletion in stellate ganglia alleviates cardiac sympathetic overactivation and ventricular arrhythmogenesis by attenuating neuroinflammation in heart failure[J]. Basic Res Cardiol,2021,116(1):28.

[23] Sabbah HN,Gupta RC,Rastogi S,et al. Treating heart failure with cardiac contractility modulation electrical signals[J]. Curr Heart Fail Rep,2006,3(1):21-24.

[24] Xiao L,Kirabo A,Wu J,et al. Renal denervation prevents immune cell activation and renal inflammation in angiotensin Ⅱ-induced hypertension[J]. Circ Res,2015,117(6):547-557.

[25] Li C,Xia W,Wang L,et al. Effect of renal denervation on cardiac function and inflammatory factors in heart failure after myocardial infarction[J]. J Cardiovasc Pharmacol,2020,76(5):602-609.

[26] Zhang M,Du Q,Yang F,et al. Acupuncture at PC6 prevents cardiac hypertrophy in isoproterenol-treated mice[J]. Acupunct Med,2019,37(1): 55-63.

[27] Wu Z,Xia Y,Wang C,et al. Electroacupuncture at Neiguan(PC6) attenuates cardiac dysfunction caused by cecal ligation and puncture via the vagus nerve[J]. Biomed Pharmacother,2023,162:114600.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(11):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(11):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(11):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(11):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(11):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(11):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(11):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
 GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(11):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(11):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
 WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(11):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]

更新日期/Last Update: 2023-12-13