[1]丁姝颖 于子翔 马依彤.线粒体功能障碍与血管钙化发生的研究进展[J].心血管病学进展,2024,(3):253.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.014]
 DING Shuying,YU Zixiang,MA Yitong.Research Progress in Mitochondria Dysfunction and the Development of Vascular Calcification[J].Advances in Cardiovascular Diseases,2024,(3):253.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.014]
点击复制

线粒体功能障碍与血管钙化发生的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年3期
页码:
253
栏目:
综述
出版日期:
2024-03-25

文章信息/Info

Title:
Research Progress in Mitochondria Dysfunction and the Development of Vascular Calcification
作者:
丁姝颖 于子翔 马依彤
翔 马依彤 (新疆医科大学第一附属医院心脏中心冠心病一科,新疆 乌鲁木齐 830054)
Author(s):
DING Shuying YU Zixiang MA Yitong
(First Department of Coronary Heart Disease, Heart Center of the First Affiliated Hospital of Xinjiang Medical University,Urumqi 830054,Xinjiang,China)
关键词:
血管钙化血管平滑肌细胞线粒体功能障碍
Keywords:
Vascular calcification Vascular smooth muscle cell Mitochondrial dysfunction
DOI:
10.16806/j.cnki.issn.1004-3934.2024.03.014
摘要:
血管钙化是在衰老、动脉粥样硬化、慢性肾脏病和糖尿病中普遍存在的病理现象。线粒体DNA损伤、线粒体微环境的改变和线粒体自噬异常等均可通过改变线粒体功能影响血管钙化的发生和发展。目前线粒体功能障碍在血管钙化过程中的作用机制尚未完全明确,现将探讨线粒体功能障碍在调控血管钙化的作用和相关机制,为临床治疗血管钙化提供思路。
Abstract:
Vascular calcification is a prevalent pathological phenomenon in senescence, atherosclerosis, chronic kidney disease and diabetes-mellitus. Mitochondrial DNA(mtDNA) damage, alterations in the mitochondrial microenvironment and abnormal mitochondrial autophagy can affect the occurrence and development of vascular calcification by altering mitochondrial function. The role of mitochondrial dysfunction in the process of vascular calcification has not been fully elucidated yet. In this paper we will explore the role of mitochondrial dysfunction and related mechanism in regulating vascular calcification, and provide therapeutic ideas for clinical treatment of vascular calcification

参考文献/References:

[1] Lee SJ,Lee IK,Jeon JH. Vascular calcification-new insights into its mechanism[J]. Int J Mol Sci,2020,21(8):2685.

[2] Tesauro M,Mauriello A,Rovella V,et al. Arterial ageing:from endothelial dysfunction to vascular calcification[J]. J Intern Med,2017,281(5):471-482.

[3] Durham AL,Speer MY,Scatena M,et al. Role of smooth muscle cells in vascular calcification:implications in atherosclerosis and arterial stiffness[J]. Cardiovasc Res,2018,114(4):590-600.

[4] Weber T,Chirinos JA. Pulsatile arterial haemodynamics in heart failure[J]. Eur Heart J,2018,39(43):3847-3854.

[5] Bartolák-Suki E,Imsirovic J,Nishibori Y,et al. Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors[J]. Int J Mol Sci,2017,18(8):1812.

[6] Luan Y,Luan Y,Yuan RX,et al. Structure and Function of Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) and their role in cardiovascular diseases[J]. Oxid Med Cell Longev,2021,2021:4578809.

[7] Liberman M,Marti LC. Vascular Calcification regulation by exosomes in the vascular wall[J]. Adv Exp Med Biol,2017,998:151-160.

[8] Hortells L,Sur S,St Hilaire C. Cell Phenotype Transitions in Cardiovascular Calcification[J]. Front Cardiovasc Med,2018,5:27.

[9] Furmanik M,Chatrou M,van Gorp R,et al. Reactive oxygen-forming Nox5 links vascular smooth muscle cell phenotypic switching and extracellular vesicle-mediated vascular calcification[J]. Circ Res,2020,127(7):911-927.

[10] Zhang ZY,Wang N,Qian LL,et al. Glucose fluctuations promote aortic fibrosis through the ROS/p38 MAPK/Runx2 signaling pathway[J]. J Vasc Res,2020,57(1):24-33.

[11] Tóth A,Balogh E,Jeney V. Regulation of vascular calcification by reactive oxygen species[J]. Antioxidants (Basel),2020,9(10) :963.

[12] Choi Y,Kim MH,Yang WM. Promotion of osteogenesis by Sweroside via BMP2-involved signaling in postmenopausal osteoporosis[J]. Phytother Res,2021,35(12):7050-7063.

[13] Wang P,Zhang N,Wu B,et al. The role of mitochondria in vascular calcification[J]. J Transl Int Med,2020,8(2):80-90.

[14] Li T,Yu H,Zhang D,et al. Matrix vesicles as a therapeutic target for vascular calcification[J]. Front Cell Dev Biol,2022,10:825622.

[15] El-Hattab AW,Craigen WJ,Scaglia F. Mitochondrial DNA maintenance defects[J]. Biochim Biophys Acta Mol Basis Dis,2017,1863(6):1539-1555.

[16] Lee KM,Lee EO,Lee YR,et al. APE1/Ref-1 inhibits phosphate-induced calcification and osteoblastic phenotype changes in vascular smooth muscle cells[J].Int J Mol Sci,2017,18(10):2053.

[17] Yu E,Calvert PA,Mercer JR,et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species and correlates with higher risk plaques in humans [J]. Atherosclerosis,2014,232(2):e3.

[18] Wang P,Wu B,You S,et al. DNA polymerase gamma recovers mitochondrial function and inhibits vascular calcification by interacted with p53[J]. Int J Biol Sci,2022,18(1):409-425.

[19] Liu YF,Zhu JJ,Yu Tian X,et al. Hypermethylation of mitochondrial DNA in vascular smooth muscle cells impairs cell contractility[J]. Cell Death Dis,2020,11(1):35.

[20] Shoji T,Isao S,Kohei T,et al. Domain structure of the Dnmt1,Dnmt3a,and Dnmt3b DNA methyltransferases[J]. Adv Exp Med Biol,2022,1389:45-68.

[21] Facchinello N,Laquatra C,Locatello L,et al. Efficient clofilium tosylate-mediated rescue of POLG-related disease phenotypes in zebrafish[J]. Cell Death Dis,2021,12(1):100.

[22] Ferrari M,Stagi S. Oxidative stress in down and williams-beuren syndromes:an overview[J]. Molecules,2021,26(11):3139.

[23] Byon CH,Heath JM,Chen Y. Redox signaling in cardiovascular pathophysiology:A focus on hydrogen peroxide and vascular smooth muscle cells[J]. Redox Biol,2016,9:244-253.

[24] Li M,Zhu Y,Jaiswal SK,et al. Mitochondria homeostasis and vascular medial calcification[J]. Calcif Tissue Int,2021,109(2):113-120.

[25] Sena CM,Leandro A,Azul L,et al. Vascular oxidative stress:impact and therapeutic approaches[J]. Front Physiol,2018,9:1668.

[26] Liu Y,Zhu JG,Cheng BC,et al. An association between time-varying serum alkaline phosphatase concentrations and mortality rate in patients undergoing peritoneal dialysis:a five-year cohort study[J]. Sci Rep,2017,7:43314.

[27] Sabouny R,Shutt TE. Reciprocal regulation of mitochondrial fission and fusion[J]. Trends Biochem Sci,2020,45(7):564-577.

[28] Cui L,Li Z,Chang X,et al. Quercetin attenuates vascular calcification by inhibiting oxidative stress and mitochondrial fission[J]. Vascul Pharmacol,2017,88:21-29.

[29] Wang L,Yu T,Lee H,et al. Decreasing mitochondrial fission diminishes vascular smooth muscle cell migration and ameliorates intimal hyperplasia[J]. Cardiovasc Res,2015,106(2):272-283.

[30] Chen WR,Zhou YJ,Sha Y,et al. Melatonin attenuates vascular calcification by inhibiting mitochondria fission via an AMPK/Drp1 signalling pathway[J]. J Cell Mol Med,2020,24(11):6043-6054.

[31] Rogers MA,Maldonado N,Hutcheson JD,et al. Dynamin-related protein 1 inhibition attenuates cardiovascular calcification in the presence of oxidative stress[J]. Circ Res,2017,121(3):220-233.

[32] Phadwal K,Vrahnas C,Ganley IG,et al. Mitochondrial dysfunction:cause or consequence of vascular calcification?[J]. Front Cell Dev Biol,2021,9:611922.

[33] Kim H,Kim HJ,Lee K,et al. alpha-Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway[J]. J Cell Mol Med,2012,16(2):273-286.

[34] Wang J,Zhu P,Li R,et al. Bax inhibitor 1 preserves mitochondrial homeostasis in acute kidney injury through promoting mitochondrial retention of PHB2[J]. Theranostics,2020, 10(1):384-397.

[35] Nguyen NT,Nguyen TT,Da Ly D,et al. Oxidative stress by Ca2+ overload is critical for phosphate-induced vascular calcification[J]. Am J Physiol Heart Circ Physiol,2020,319(6):H1302-H1312.

[36] Al-Aly Z. Phosphate,oxidative stress,and nuclear factor-kappaB activation in vascular calcification [J]. Kidney Int,2011,79(10):1044-1047.

[37] Nguyen TT,Quan X,Xu S,et al. Intracellular alkalinization by phosphate uptake via type III sodium-phosphate cotransporter participates in high-phosphate-induced mitochondrial oxidative stress and defective insulin secretion[J]. FASEB J,2016,30(12):3979-3988.

[38] Phadwal K,Feng D,Zhu D,et al. Autophagy as a novel therapeutic target in vascular calcification[J]. Pharmacol Ther,2020,206:107430.

[39] Bi W,Jia J,Pang R,et al. Thyroid hormone postconditioning protects hearts from ischemia/reperfusion through reinforcing mitophagy[J]. Biomed Pharmacother,2019,118:109220.

[40] Zhu Y,Han XQ,Sun XJ,et al. Lactate accelerates vascular calcification through NR4A1-regulated mitochondrial fission and BNIP3-related mitophagy[J]. Apoptosis,2020,25(5-6):321-340.

相似文献/References:

[1]靳天慧 陈亮 宗刚军.非编码RNA在血管钙化中的调控作用[J].心血管病学进展,2020,(9):938.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.013]
 JIN Tianhui,CHEN Liang,ZONG Gangjun.Regulatory Role of Non-coding RNA in Vascular Calcification[J].Advances in Cardiovascular Diseases,2020,(3):938.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.013]
[2]王欣笛,苏冠华. MicroRNA-155在高血压发病机制和治疗中的研究进展[J].心血管病学进展,2020,(10):1040.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.010]
 WANG Xindi,SU Guanhua.MicroRNA-155 in Pathogenesis and Treatment of Hypertension[J].Advances in Cardiovascular Diseases,2020,(3):1040.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.010]
[3]张菲菲 周子皓 王芳.白介素在血管钙化作用机制中的研究进展[J].心血管病学进展,2021,(4):364.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.018]
 HANG Feifei,ZHOU Zihao,WANG Fang?/html>.Research Progress of Interleukin in the Mechanism?f Vascular Calcification[J].Advances in Cardiovascular Diseases,2021,(3):364.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.018]
[4]蔡宇宸 姚弈伟 陈鑫.ADAMTS家族蛋白与主动脉瘤相关性的研究及进展[J].心血管病学进展,2022,(5):450.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.016]
 CAI Yuchen,YAO Yiwei,CHEN Xin.The Association of ADAMTS Family with Aortic Aneurysms[J].Advances in Cardiovascular Diseases,2022,(3):450.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.016]
[5]杨晓晓 王峰 罗善顺 石立力.利拉鲁肽对糖尿病合并动脉粥样硬化模型中骨保护素的影响及机制研究[J].心血管病学进展,2022,(8):753.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.021]
 YANG Xiaoxiao,WANG Feng,LUO Shanshun,et al.The effect and Mechanism of Liraglutide on Osteoprotegerin?n Diabetic Atherosclerosis Rat[J].Advances in Cardiovascular Diseases,2022,(3):753.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.021]
[6]周昌颐 王瑞 沈雳.血管支架植入对血管平滑肌细胞的影响[J].心血管病学进展,2023,(4):299.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.003]
 ZHOU Changyi,WANG Rui,SHEN Li.Impact of Vascular Stent Implantation on Vascular Smooth Muscle Cells[J].Advances in Cardiovascular Diseases,2023,(3):299.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.003]
[7]周强 曹勖 王睿.血管平滑肌细胞线粒体与腹主动脉瘤发生发展的研究进展[J].心血管病学进展,2024,(5):442.[doi:10.16806/j.cnki.issn.1004-3934.2024.05.014]
 ZHOU Qiang,CAO Xu,WANG Rui.Vascular Smooth Muscle Cell Mitochondria and Abdominal Aortic Aneurysm Formation and Development[J].Advances in Cardiovascular Diseases,2024,(3):442.[doi:10.16806/j.cnki.issn.1004-3934.2024.05.014]
[8]黄延鑫 姚园 吴星亮 刘力源 易欣.血管平滑肌细胞程序性死亡在主动脉夹层中的研究进展与展望[J].心血管病学进展,2024,(8):712.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.009]
 HUANG YanxinYAO YuanWU XingliangLIU LiyuanYI Xin.Progress and Perspectives of Programmed Vascular Smooth Muscle Cell Death?n Aortic Coarctation[J].Advances in Cardiovascular Diseases,2024,(3):712.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.009]
[9]张昊亮 林政凯 陈志杰 陈丽君 杨阳.单细胞测序技术解析血管平滑肌细胞的可塑性在动脉粥样硬化中的作用[J].心血管病学进展,2024,(9):821.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.012]
 ZHANG Haoliang,LIN Zhengkai,CHEN Zhijie,et al.Roles of Vascular Smooth Muscle Cell Plasticity in Development of Atherosclerosis as Revealed by Single-Cell Sequencing[J].Advances in Cardiovascular Diseases,2024,(3):821.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.012]

更新日期/Last Update: 2024-04-26