参考文献/References:
[1] Ramms B,Gordts PLSM. Apolipoprotein C-Ⅲ in triglyceride-rich lipoprotein metabolism[J ]. Curr Opin Lipidol,2018,29(3):171-179.
[2] Basu D,Goldberg IJ. Regulation of lipoprotein lipase-mediated lipolysis of triglycerides[J]. Curr Opin Lipidol,2020,31(3):154-160.
[3] D’Erasmo L,Di Costanzo A,Gallo A,et al. ApoCⅢ:a multifaceted protein in cardiometabolic disease [J]. Metabolism,2020,113:154395.
[4] Borén J,Watts GF,Adiels M,et al. Kinetic and related determinants of plasma triglyceride concentration in abdominal obesit:multicenter tracer kinetic study[J]. Arterioscler Thromb Vasc Biol,2015,35(10):2218-2224.
[5] Tang X,Zhou H,Yan H,et al. Is apoCⅢ-Lowering a double-edged sword?[J]. J Atheroscler Thromb,2022,29(7):1117-1124.
[6] Meyers NL,Larsson M,Vorrsj? E,et al. Aromatic residues in the C terminus of apolipoprotein C-Ⅲ mediate lipid binding and LPL inhibition[J ]. J Lipid Res,2017,58(5):840-852.
[7] Gordts PL,Nock R,Son NH,et al. ApoC-Ⅲ inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors [J]. J Clin Invest,2016,126(8):2855-2866.
[8] Yao Z. Human apolipoprotein C-Ⅲ—A new intrahepatic protein factor promoting assembly and secretion of very low density lipoproteins[J]. Cardiovasc Hematol Disord Drug Targets,2012,12(2):133-140.
[9] Luo M,Liu A,Wang S,et al. ApoCⅢ enrichment in HDL impairs HDL-mediated cholesterol efflux capacity[J ]. Sci Rep,2017,7(1):2312.
[10] Morton AM,Koch M,Mendivil CO,et al. Apolipoproteins E and CⅢ interact to regulate HDL metabolism and coronary heart disease risk[J ]. JCI Insight,2018,3(4):e98045.
[11] Hieronimus B,Stanhope KL. Dietary fructose and dyslipidemia:new mechanisms involving apolipoprotein CⅢ[J]. Curr Opin Lipidol,2020,31(1):20-26.
[12] West G,Rodia C,Li D,et al. Key differences between apoC-Ⅲ regulation and expression in intestine and liver[J ]. Biochem Biophys Res Commun,2017,491(3):747-753.
[13] Jattan J,Rodia C,Li D,et al. Using primary murine intestinal enteroids to study dietary TAG absorption,lipoprotein synthesis,and the role of apoC-Ⅲ in the intestine[J ]. J Lipid Res,2017,58(5):853-865.
[14] Li D,Rodia CN,Johnson ZK,et al. Intestinal basolateral lipid substrate transport is linked to chylomicron secretion and is regulated by apoC-Ⅲ[J]. J Lipid Res,2019,60(9):1503-1515.
[15] TG and HDL Working Group of the Exome Sequencing Project,National Heart,Lung,and Blood Institute; Crosby J,Peloso GM,et al. Loss-of-function mutations in APOC3,triglycerides,and coronary disease[J]. N Engl J Med,2014,371(1):22-31.
[16] Ginsberg HN,Packard CJ,Chapman MJ,et al. Triglyceride-rich lipoproteins and their remnants:metabolic insights,role in atherosclerotic cardiovascular disease,and emerging therapeutic strategies—A consensus statement from the European Atherosclerosis Society[J]. Eur Heart J,2021,42(47):4791-4806.
[17] Miura Y,Suzuki H. Hypertriglyceridemia and atherosclerotic carotid artery stenosis[J]. Int J Mol Sci,2022,23(24):16224.
[18] Welty FK. How do elevated triglycerides and low HDL-cholesterol affect inflammation and atherothrombosis?[J]. Curr Cardiol Rep,2013,15(9):400.
[19] Kawakami A,Aikawa M,Alcaide P,et al. Apolipoprotein CⅢ induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells [J]. Circulation,2006,114(7):681-687.
[20] Kawakami A,Aikawa M,Nitta N,et al. Apolipoprotein CⅢ-induced THP-1 cell adhesion to endothelial cells involves pertussis toxin-sensitive G protein- and protein kinase C alpha-mediated nuclear factor-kappaB activation[J]. Arterioscler Thromb Vasc Biol,2007,27(1):219-225.
[21] Zheng C,Azcutia V,Aikawa E,et al. Statins suppress apolipoprotein CⅢ-induced vascular endothelial cell activation and monocyte adhesion[J]. Eur Heart J,2013,34(8):615-624.
[22] Han X,Wang T,Zhang J,et al. Apolipoprotein CⅢ regulates lipoprotein-associated phospholipase A2 expression via the MAPK and NFκB pathways[J ]. Biol Open,2015,4(5):661-665.
[23] Yingchun H,Yahong M,Jiangping W,et al. Increased inflammation,endoplasmic reticulum stress and oxidative stress in endothelial and macrophage cells exacerbate atherosclerosis in ApoCⅢ transgenic mice[J ]. Lipids Health Dis,2018,17(1):220.
[24] Li H,Han Y,Qi R,et al. Aggravated restenosis and atherogenesis in ApoCⅢ transgenic mice but lack of protection in ApoC Ⅲ knockouts :the effect of authentic triglyceride-rich lipoproteins with and without ApoCⅢ[J]. Cardiovasc Res,2015,107(4):579-589.
[25] Martinelli N,Baroni M,Castagna A,et al. Apolipoprotein C-Ⅲ strongly correlates with activated factor Ⅶ- anti-thrombin complex:an additional link between plasma lipids and coagulation[J]. Thromb Haemost,2019,119(2):192-202.
[26] Olivieri O,Martinelli N,Baroni M,et al. FactorⅡactivity is similarly increased in patients with elevated apolipoprotein CⅢ and in carriers of the factor Ⅱ20210A allele[J]. J Am Heart Assoc,2013,2(6):e000440.
[27] Olivieri O,Turcato G,Cappellari M,et al. High plasma concentration of apolipoprotein C-Ⅲ confers an increased risk of cerebral ischemic events on cardiovascular patients anticoagulated with warfarin[J ]. Front Cardiovasc Med,2022,8:781383.
[28] Juntti-Berggren L,Berggren PO. Apolipoprotein CⅢ is a new player in diabetes[J ]. Curr Opin Lipidol,2017,28(1):27-31.
[29] Yahagi K,Kolodgie FD,Lutter C,et al. Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus[J]. Arterioscler Thromb Vasc Biol,2017,37(2):191-204.
[30] Buckner T,Shao B,Eckel RH,et al. Association of apolipoprotein C3 with insulin resistance and coronary artery calcium in patients with type 1 diabetes[J]. J Clin Lipidol,2021,15(1):235-242.
[31] Chait A,Ginsberg HN,Vaisar T,et al. Remnants of the triglyceride-rich lipoproteins,diabetes,and cardiovascular disease[J]. Diabetes,2020,69(4):508-516.
[32] Haas ME,Attie AD,Biddinger SB. The regulation of ApoB metabolism by insulin[J]. Trends Endocrinol Metab,2013,24(8):391-397.
[33] Sandesara PB,Virani SS,Fazio S,et al. The forgotten lipids:triglycerides,remnant cholesterol,and atherosclerotic cardiovascular disease risk[J]. Endocr Rev,2019,40(2):537-557.
[34] Ginsberg HN,Reyes-Soffer G. Is APOC3 the driver of cardiovascular disease in people with type I diabetes mellitus?[J]. J Clin Invest,2019,129(10):4074-4076.
[35] Jo G,Kwak SY,Kim JY,et al. Association between genetic variant of apolipoprotein C3 and incident hypertension stratified by obesity and physical activity in Korea[J]. Nutrients,2018,10(11):1595.
[36] Li Y,Li C,Gao J. Apolipoprotein C3 gene variants and the risk of coronary heart disease:a meta-analysis[J]. Meta Gene,2016,9:104-109.
[37] Song Y,Zhu L,Richa M,et al. Associations of the APOC3 rs5128 polymorphism with plasma APOC3 and lipid levels:a meta-analysis[J]. Lipids Health Dis,2015,14:32.
[38] Lin B,Huang Y,Zhang M,et al. Association between apolipoprotein C3 Sst I,T-455C,C-482T and C1100T polymorphisms and risk of coronary heart disease[J]. BMJ Open,2014,4(1):e004156.
[39] Smith JA,Ware EB,Middha P,et al. Current applications of genetic risk scores to cardiovascular outcomes and subclinical phenotypes[J]. Curr Epidemiol Rep,2015,2(3):180-190.
[40] Reyes-Soffer G,Sztalryd C,Horenstein RB,et al. Effects of APOC3 heterozygous deficiency on plasma lipid and lipoprotein metabolism[J].Arterioscler Thromb Vasc Biol,2019,39(1):63-72.
[41] Kim K,Ginsberg HN,Choi SH. New,novel lipid-lowering agents for reducing cardiovascular risk:beyond Statins[J]. Diabetes Metab J, 2022,46(4):517-532.
[42] Gareri C,Polimeni A,Giordano S,et al. Antisense oligonucleotides and small interfering RNA for the treatment of dyslipidemias[J]. J Clin Med,2022,11(13):3884.
[43] Calcaterra I,Lupoli R,Di Minno A,et al. Volanesorsen to treat severe hypertriglyceridaemia:a?pooled analysis of randomized controlled trials[J]. Eur J Clin Invest,2022,52(11):e13841.
[44] Paik J,Duggan S. Volanesorsen:First global approval[J]. Drugs,2019,79(12):1349-1354.
[45] Digenio A,Dunbar RL,Alexander VJ,et al. Antisense-mediated lowering of plasma apolipoprotein C-Ⅲ by volanesorsen improves dyslipidemia and insulin sensitivity in type 2 diabetes [J]. Diabetes care,2016,39(8):1408-1415.
[46] Alexander VJ,Xia S,Hurh E,et al. N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA,triglycerides and atherogenic lipoprotein levels[J]. Eur Heart J,2019,40(33):2785-2796.
[47] Pechlaner R,Tsimikas S,Yin X,et al. Very-low-density lipoprotein-associated apolipoproteins predict cardiovascular events and are lowered by inhibition of APOC-Ⅲ[J]. J Am Coll Cardiol,2017,69(7):789-800.
[48] Wolska A,Lo L,Sviridov DO,et al. A dual apolipoprotein C-II mimetic-apolipoprotein C-Ⅲ antagonist peptide lowers plasma triglycerides[J ]. Sci Transl Med,2020,12(528):eaaw7905.
相似文献/References:
[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(12):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(12):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(12):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(12):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(12):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(12):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(12):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(12):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(12):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(12):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]