[1]李俊 李春霞 陈瑞瑞 张夏林 杨志明.载脂蛋白C3在代谢性心血管疾病中的研究进展[J].心血管病学进展,2023,(12):1125.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.016]
 Li Jun,Li Chunxia,Chen Ruirui,et al.Apolipoprotein C3 in Metabolic Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2023,(12):1125.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.016]
点击复制

载脂蛋白C3在代谢性心血管疾病中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年12期
页码:
1125
栏目:
综述
出版日期:
2023-12-25

文章信息/Info

Title:
Apolipoprotein C3 in Metabolic Cardiovascular Diseases
作者:
李俊1 李春霞 2 陈瑞瑞 2 张夏林 2 杨志明 3
(1.山西医科大学,山西 太原 030000;2.山西白求恩医院,山西 太原 030000;3.山西医科大学第二医院心血管内科,山西 太原 030000)
Author(s):
Li Jun1Li Chunxia2Chen Ruirui2Zhang Xialin2Yang Zhiming3
Shanxi Medical University,Taiyuan 030000,Shanxi,China2.Shanxi Bethune Hospital,Taiyuan 030000,Shanxi,ChinaDepartment of Cardiology,The Second Hospital of Shanxi Medical University,Taiyuan 030000,Shanxi,China)
关键词:
载脂蛋白C3动脉粥样硬化基因多态性反义寡核苷酸
Keywords:
Apolipoprotein C3AtherosclerosisGene polymorphismAntisense oligonucleotides
DOI:
10.16806/j.cnki.issn.1004-3934.2023.12.016
摘要:
载脂蛋白(Apo)C3参与血脂代谢致动脉粥样硬化的作用是肯定的。近年来,研究还发现ApoC3通过参与炎症反应、内皮细胞功能障碍、凝血反应、胰岛素抵抗等过程进一步促进动脉粥样硬化的形成。随着对APOC3基因及信号通路的深入研究,反义寡核苷酸和小干扰RNA的出现开启了降脂治疗的新篇章。现就ApoC3在代谢性心血管疾病中的作用机制、基因多态性及新治疗策略做以下综述。
Abstract:
It is an indisputable fact that apolipoprotein(Apo) C3 is involved in atherosclerosis caused by blood lipid metabolism. In recent years ,studies have also found that ApoC3 further promotes the formation of atherosclerosis by participating in inflammatory reaction,endothelial cell dysfunction,coagulation reaction,insulin resistance and so on. With the gradual understanding of the gene sequence and signal pathway of APOC3 ,the emergence of antisense oligonucleotides and small interfering RNA opened a new chapter in lipid-lowering therapy. This article reviews the mechanism ,gene polymorphism and new therapeutic strategies of ApoC3 in metabolic cardiovascular diseases

参考文献/References:

[1] Ramms B,Gordts PLSM. Apolipoprotein C-Ⅲ in triglyceride-rich lipoprotein metabolism[J ]. Curr Opin Lipidol,2018,29(3):171-179.

[2] Basu D,Goldberg IJ. Regulation of lipoprotein lipase-mediated lipolysis of triglycerides[J]. Curr Opin Lipidol,2020,31(3):154-160.

[3] D’Erasmo L,Di Costanzo A,Gallo A,et al. ApoCⅢ:a multifaceted protein in cardiometabolic disease [J]. Metabolism,2020,113:154395.

[4] Borén J,Watts GF,Adiels M,et al. Kinetic and related determinants of plasma triglyceride concentration in abdominal obesit:multicenter tracer kinetic study[J]. Arterioscler Thromb Vasc Biol,2015,35(10):2218-2224.

[5] Tang X,Zhou H,Yan H,et al. Is apoCⅢ-Lowering a double-edged sword?[J]. J Atheroscler Thromb,2022,29(7):1117-1124.

[6] Meyers NL,Larsson M,Vorrsj? E,et al. Aromatic residues in the C terminus of apolipoprotein C-Ⅲ mediate lipid binding and LPL inhibition[J ]. J Lipid Res,2017,58(5):840-852.

[7] Gordts PL,Nock R,Son NH,et al. ApoC-Ⅲ inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors [J]. J Clin Invest,2016,126(8):2855-2866.

[8] Yao Z. Human apolipoprotein C-Ⅲ—A new intrahepatic protein factor promoting assembly and secretion of very low density lipoproteins[J]. Cardiovasc Hematol Disord Drug Targets,2012,12(2):133-140.

[9] Luo M,Liu A,Wang S,et al. ApoCⅢ enrichment in HDL impairs HDL-mediated cholesterol efflux capacity[J ]. Sci Rep,2017,7(1):2312.

[10] Morton AM,Koch M,Mendivil CO,et al. Apolipoproteins E and CⅢ interact to regulate HDL metabolism and coronary heart disease risk[J ]. JCI Insight,2018,3(4):e98045.

[11] Hieronimus B,Stanhope KL. Dietary fructose and dyslipidemia:new mechanisms involving apolipoprotein CⅢ[J]. Curr Opin Lipidol,2020,31(1):20-26.

[12] West G,Rodia C,Li D,et al. Key differences between apoC-Ⅲ regulation and expression in intestine and liver[J ]. Biochem Biophys Res Commun,2017,491(3):747-753.

[13] Jattan J,Rodia C,Li D,et al. Using primary murine intestinal enteroids to study dietary TAG absorption,lipoprotein synthesis,and the role of apoC-Ⅲ in the intestine[J ]. J Lipid Res,2017,58(5):853-865.

[14] Li D,Rodia CN,Johnson ZK,et al. Intestinal basolateral lipid substrate transport is linked to chylomicron secretion and is regulated by apoC-Ⅲ[J]. J Lipid Res,2019,60(9):1503-1515.

[15] TG and HDL Working Group of the Exome Sequencing Project,National Heart,Lung,and Blood Institute; Crosby J,Peloso GM,et al. Loss-of-function mutations in APOC3,triglycerides,and coronary disease[J]. N Engl J Med,2014,371(1):22-31.

[16] Ginsberg HN,Packard CJ,Chapman MJ,et al. Triglyceride-rich lipoproteins and their remnants:metabolic insights,role in atherosclerotic cardiovascular disease,and emerging therapeutic strategies—A consensus statement from the European Atherosclerosis Society[J]. Eur Heart J,2021,42(47):4791-4806.

[17] Miura Y,Suzuki H. Hypertriglyceridemia and atherosclerotic carotid artery stenosis[J]. Int J Mol Sci,2022,23(24):16224.

[18] Welty FK. How do elevated triglycerides and low HDL-cholesterol affect inflammation and atherothrombosis?[J]. Curr Cardiol Rep,2013,15(9):400.

[19] Kawakami A,Aikawa M,Alcaide P,et al. Apolipoprotein CⅢ induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells [J]. Circulation,2006,114(7):681-687.

[20] Kawakami A,Aikawa M,Nitta N,et al. Apolipoprotein CⅢ-induced THP-1 cell adhesion to endothelial cells involves pertussis toxin-sensitive G protein- and protein kinase C alpha-mediated nuclear factor-kappaB activation[J]. Arterioscler Thromb Vasc Biol,2007,27(1):219-225.

[21] Zheng C,Azcutia V,Aikawa E,et al. Statins suppress apolipoprotein CⅢ-induced vascular endothelial cell activation and monocyte adhesion[J]. Eur Heart J,2013,34(8):615-624.

[22] Han X,Wang T,Zhang J,et al. Apolipoprotein CⅢ regulates lipoprotein-associated phospholipase A2 expression via the MAPK and NFκB pathways[J ]. Biol Open,2015,4(5):661-665.

[23] Yingchun H,Yahong M,Jiangping W,et al. Increased inflammation,endoplasmic reticulum stress and oxidative stress in endothelial and macrophage cells exacerbate atherosclerosis in ApoCⅢ transgenic mice[J ]. Lipids Health Dis,2018,17(1):220.

[24] Li H,Han Y,Qi R,et al. Aggravated restenosis and atherogenesis in ApoCⅢ transgenic mice but lack of protection in ApoC Ⅲ knockouts :the effect of authentic triglyceride-rich lipoproteins with and without ApoCⅢ[J]. Cardiovasc Res,2015,107(4):579-589.

[25] Martinelli N,Baroni M,Castagna A,et al. Apolipoprotein C-Ⅲ strongly correlates with activated factor Ⅶ- anti-thrombin complex:an additional link between plasma lipids and coagulation[J]. Thromb Haemost,2019,119(2):192-202.

[26] Olivieri O,Martinelli N,Baroni M,et al. FactorⅡactivity is similarly increased in patients with elevated apolipoprotein CⅢ and in carriers of the factor Ⅱ20210A allele[J]. J Am Heart Assoc,2013,2(6):e000440.

[27] Olivieri O,Turcato G,Cappellari M,et al. High plasma concentration of apolipoprotein C-Ⅲ confers an increased risk of cerebral ischemic events on cardiovascular patients anticoagulated with warfarin[J ]. Front Cardiovasc Med,2022,8:781383.

[28] Juntti-Berggren L,Berggren PO. Apolipoprotein CⅢ is a new player in diabetes[J ]. Curr Opin Lipidol,2017,28(1):27-31.

[29] Yahagi K,Kolodgie FD,Lutter C,et al. Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus[J]. Arterioscler Thromb Vasc Biol,2017,37(2):191-204.

[30] Buckner T,Shao B,Eckel RH,et al. Association of apolipoprotein C3 with insulin resistance and coronary artery calcium in patients with type 1 diabetes[J]. J Clin Lipidol,2021,15(1):235-242.

[31] Chait A,Ginsberg HN,Vaisar T,et al. Remnants of the triglyceride-rich lipoproteins,diabetes,and cardiovascular disease[J]. Diabetes,2020,69(4):508-516.

[32] Haas ME,Attie AD,Biddinger SB. The regulation of ApoB metabolism by insulin[J]. Trends Endocrinol Metab,2013,24(8):391-397.

[33] Sandesara PB,Virani SS,Fazio S,et al. The forgotten lipids:triglycerides,remnant cholesterol,and atherosclerotic cardiovascular disease risk[J]. Endocr Rev,2019,40(2):537-557.

[34] Ginsberg HN,Reyes-Soffer G. Is APOC3 the driver of cardiovascular disease in people with type I diabetes mellitus?[J]. J Clin Invest,2019,129(10):4074-4076.

[35] Jo G,Kwak SY,Kim JY,et al. Association between genetic variant of apolipoprotein C3 and incident hypertension stratified by obesity and physical activity in Korea[J]. Nutrients,2018,10(11):1595.

[36] Li Y,Li C,Gao J. Apolipoprotein C3 gene variants and the risk of coronary heart disease:a meta-analysis[J]. Meta Gene,2016,9:104-109.

[37] Song Y,Zhu L,Richa M,et al. Associations of the APOC3 rs5128 polymorphism with plasma APOC3 and lipid levels:a meta-analysis[J]. Lipids Health Dis,2015,14:32.

[38] Lin B,Huang Y,Zhang M,et al. Association between apolipoprotein C3 Sst I,T-455C,C-482T and C1100T polymorphisms and risk of coronary heart disease[J]. BMJ Open,2014,4(1):e004156.

[39] Smith JA,Ware EB,Middha P,et al. Current applications of genetic risk scores to cardiovascular outcomes and subclinical phenotypes[J]. Curr Epidemiol Rep,2015,2(3):180-190.

[40] Reyes-Soffer G,Sztalryd C,Horenstein RB,et al. Effects of APOC3 heterozygous deficiency on plasma lipid and lipoprotein metabolism[J].Arterioscler Thromb Vasc Biol,2019,39(1):63-72.

[41] Kim K,Ginsberg HN,Choi SH. New,novel lipid-lowering agents for reducing cardiovascular risk:beyond Statins[J]. Diabetes Metab J, 2022,46(4):517-532.

[42] Gareri C,Polimeni A,Giordano S,et al. Antisense oligonucleotides and small interfering RNA for the treatment of dyslipidemias[J]. J Clin Med,2022,11(13):3884.

[43] Calcaterra I,Lupoli R,Di Minno A,et al. Volanesorsen to treat severe hypertriglyceridaemia:a?pooled analysis of randomized controlled trials[J]. Eur J Clin Invest,2022,52(11):e13841.

[44] Paik J,Duggan S. Volanesorsen:First global approval[J]. Drugs,2019,79(12):1349-1354.

[45] Digenio A,Dunbar RL,Alexander VJ,et al. Antisense-mediated lowering of plasma apolipoprotein C-Ⅲ by volanesorsen improves dyslipidemia and insulin sensitivity in type 2 diabetes [J]. Diabetes care,2016,39(8):1408-1415.

[46] Alexander VJ,Xia S,Hurh E,et al. N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA,triglycerides and atherogenic lipoprotein levels[J]. Eur Heart J,2019,40(33):2785-2796.

[47] Pechlaner R,Tsimikas S,Yin X,et al. Very-low-density lipoprotein-associated apolipoproteins predict cardiovascular events and are lowered by inhibition of APOC-Ⅲ[J]. J Am Coll Cardiol,2017,69(7):789-800.

[48] Wolska A,Lo L,Sviridov DO,et al. A dual apolipoprotein C-II mimetic-apolipoprotein C-Ⅲ antagonist peptide lowers plasma triglycerides[J ]. Sci Transl Med,2020,12(528):eaaw7905.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(12):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(12):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(12):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(12):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(12):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(12):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(12):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(12):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(12):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(12):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]

更新日期/Last Update: 2024-01-19