[1]孙睿 王阿曼.肿瘤免疫治疗相关动脉粥样硬化的研究进展[J].心血管病学进展,2023,(7):585.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.003]
 SUN Rui,WANG Aman.Atherosclerosis Associated with Cancer Immune Therapy[J].Advances in Cardiovascular Diseases,2023,(7):585.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.003]
点击复制

肿瘤免疫治疗相关动脉粥样硬化的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年7期
页码:
585
栏目:
综述
出版日期:
2023-07-25

文章信息/Info

Title:
Atherosclerosis Associated with Cancer Immune Therapy
作者:
孙睿 王阿曼
(大连医科大学附属第一医院肿瘤内科,辽宁 大连116000)
Author(s):
SUN RuiWANG Aman
(Department of Oncology,The First Affiliated Hospital of Dalian Medical University,Dalian 116000 ,Liaoning,China)
关键词:
动脉粥样硬化免疫检查点抑制剂免疫相关不良事件心血管毒性
Keywords:
AtherosclerosisImmune checkpoint inhibitorsImmune-related adverse eventsCardiovascular?toxicity
DOI:
10.16806/j.cnki.issn.1004-3934.2023.07.003
摘要:
免疫检查点抑制剂(ICI)的应用改善了多种肿瘤的疗效和预后,然而其特有的免疫相关不良事件(irAE)尤其是心脏毒性受到关注。最近的研究发现ICI治疗可能通过促进动脉慢性炎症导致或加重动脉粥样硬化,机制尚不十分明确。现重点对ICI相关动脉粥样硬化的流行病学、病理生理机制、影像学特征和药物治疗方面的进展进行综述,旨在提高临床医生对该心血管irAE的认识和诊疗水平。
Abstract:
The application of immune checkpoint inhibitors (ICI) has improved the efficacy and prognosis of a variety of tumors. However,its unique immune-related adverse events (irAE) ,especially cardiotoxicity,have attracted much attention. Recent studies have found that ICI therapy may cause or aggravate atherosclerosis by promoting chronic inflammation of the arteries ,but the mechanism is not fully understood. This review focuses on the epidemiology,pathophysiological mechanisms,imaging features and drug therapy of ICI-related atherosclerosis,with the aim of improving the understanding and diagnosis lever of cardiovascular irAE among clinicians

参考文献/References:

[1] Hodi FS,Chiarion-Sileni V,Gonzalez R,et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067):4-year outcomes of a multicentre,randomised,phase 3 trial[J]. Lancet Oncol,2018,19(11):1480-1492.

[2] Larkin J,Chiarion-Sileni V,Gonzalez R,et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma[J]. N Engl J Med,2019,381(16):1535-1546.

[3] Postow MA,Sidlow R,Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade[J]. N Engl J Med,2018,378(2):158-168.

[4] Haslam A,Prasad V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs[J]. JAMA Netw Open,2019,2(5):e192535.

[5] Salem JE,Manouchehri A,Moey M,et al. Cardiovascular toxicities associated with immune checkpoint inhibitors:an observational,retrospective,pharmacovigilance study[J]. Lancet Oncol,2018,19(12):1579-1589.

[6] Escudier M,Cautela J,Malissen N,et al. Clinical features,management,and outcomes of immune checkpoint inhibitor-related cardiotoxicity[J]. Circulation,2017,136(21):2085-2087.

[7] Wang DY,Salem JE,Cohen JV,et al. Fatal toxic effects associated with immune checkpoint inhibitors:a systematic review and meta-analysis[J]. JAMA Oncol,2018,4(12):1721-1728.

[8] Lindquist M. VigiBase,the WHO Global ICSR Database System:basic facts[J]. Adverse Events,2008,42:409-419.

[9] Patrinely JR Jr, Young AC,Quach H,et al. Survivorship in immune therapy:assessing toxicities,body composition and health-related quality of life among long-term survivors treated with antibodies to programmed death-1 receptor and its ligand[J]. Eur J Cancer,2020,135:211-220.

[10] O’reilly A,Hughes P,Mann J,et al. An immunotherapy survivor population:health-related quality of life and toxicity in patients with metastatic melanoma treated with immune checkpoint inhibitors[J]. Support Care Cancer,2020,28(2):561-570.

[11] Lutgens E,Seijkens TTP. Cancer patients receiving immune checkpoint inhibitor therapy are at an increased risk for atherosclerotic cardiovascular disease[J]. J Immunother Cancer,2020,8(1):e000300.

[12] Coureau M,Meert AP,Berghmans T,et al. Efficacy and toxicity of immune -checkpoint inhibitors in patients with preexisting autoimmune disorders [J]. Front Med (Lausanne),2020,7:137.

[13] Gremese E,Alivernini S,Ferraccioli ES,et al. Checkpoint inhibitors (CPI) and autoimmune chronic inflammatory diseases (ACIDs):tolerance and loss of tolerance in the occurrence of immuno-rheumatologic manifestations[J]. Clin Immunol,2020,214:108395.

[14] Cuddy S,Payne DL,Murphy DJ,et al. Incidental coronary artery calcification in cancer imaging[J]. JACC CardioOncol,2019,1(1):135-137.

[15] Vincent L,Leedy D,Masri SC,et al. Cardiovascular disease and cancer:is there increasing overlap?[J]. Curr Oncol Rep,2019,21(6):47.

[16] Tomita Y,Sueta D,Kakiuchi Y,et al. Acute coronary syndrome as a possible immune-related adverse event in a lung cancer patient achieving a complete response to anti-PD-1 immune checkpoint antibody[J]. Ann Oncol,2017,28(11):2893-2895.

[17] Chen X,Wu Q,You L,et al. Propofol attenuates pancreatic cancer malignant potential via inhibition of NMDA receptor[J]. Eur J Pharmacol,2017,795:150-159.

[18] Bar J,Markel G,Gottfried T,et al. Acute vascular events as a possibly related adverse event of immunotherapy:a single-institute retrospective study[J]. Eur J Cancer,2019,120:122-131.

[19] Drobni ZD,Alvi RM,Taron J,et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque[J]. Circulation,2020,142(24):2299-2311.

[20] Solinas C,Saba L,Sganzerla P,et al. Venous and arterial thromboembolic events with immune checkpoint inhibitors:A systematic review[J]. Thromb Res,2020,196:444-453.

[21] Fernandez DM,Rahman AH,Fernandez NF,et al. Single-cell immune landscape of human atherosclerotic plaques[J]. Nat Med,2019,25(10):1576-1588.

[22] Depuydt MAC,Prange KHM,Slenders L,et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics[J]. Circ Res,2020,127(11):1437-1455.

[23] Winkels H,Ehinger E,Vassallo M,et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry[J]. Circ Res,2018,122(12):1675-1688.

[24] Seijkens TTP,Lutgens E. Cardiovascular oncology:exploring the effects of targeted cancer therapies on atherosclerosis[J]. Curr Opin Lipidol,2018,29(5):381-388.

[25] Padgett LE,Araujo DJ,Hedrick CC,et al. Functional crosstalk between T cells and monocytes in cancer and atherosclerosis[J]. J Leukoc Bio,2020,108(1):297-308.

[26] Gotsman I,Grabie N,Dacosta R,et al. Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice[J]. J Clin Invest,2007,117(10):2974-2982.

[27] Bu DX,Tarrio M,Maganto-garcia E,et al. Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation[J]. Arterioscler Thromb Vasc Biol,2011,31(5):1100-1107.

[28] Buono C,Pang H,Uchida Y,et al. B7-1/B7-2 costimulation regulates plaque antigen-specific T-cell responses and atherogenesis in low-density lipoprotein receptor-deficient mice[J]. Circulation,2004,109(16):2009-2015.

[29] Ewing MM,Karper JC,Abdul S,et al. T-cell co-stimulation by CD28-CD80/86 and its negative regulator CTLA-4 strongly influence accelerated atherosclerosis development[J]. Int J Cardiol,2013,168(3):1965-1974.

[30] Matsumoto T,Sasaki N,Yamashita T,et al. Overexpression of cytotoxic t-lymphocyte-associated antigen-4 prevents atherosclerosis in mice[J]. Arterioscler Thromb Vasc Biol,2016,36(6):1141-1151.

[31] Poels K,van Leent MMT,Reiche ME,et al. Antibody-mediated inhibition of CTLA4 aggravates atherosclerotic plaque inflammation and progression in hyperlipidemic mice[J]. Cells,2020,9(9):1987.

[32] Poels K,Van Leent MMT,Boutros C,et al. Immune checkpoint inhibitor therapy aggravates T cell-driven plaque inflammation in atherosclerosis[J]. JACC CardioOncol,2020,2(4):599-610.

[33] Newman JL,Stone JR. Immune checkpoint inhibition alters the inflammatory cell composition of human coronary artery atherosclerosis[J]. Cardiovasc Pathol,2019,43:107148.

[34] Kusters PJH,Lutgens E,Seijkens TTP. Exploring immune checkpoints as potential therapeutic targets in atherosclerosis[J]. Cardiovasc Res,2018,114(3):368-377.

[35] Tarkin JM,Joshi FR,Rudd JH. PET imaging of inflammation in atherosclerosis[J]. Nat Rev Cardiol,2014,11(8):443-457.

[36] Calabretta R,Hoeller C,Pichler V,et al. Immune checkpoint inhibitor therapy induces inflammatory activity in large arteries[J]. Circulation,2020,142(24):2396-2398.

[37] Jonasson L,Holm J,Skalli O,et al. Regional accumulations of T cells,macrophages,and smooth muscle cells in the human atherosclerotic plaque[J]. Arteriosclerosis,1986,6(2):131-138.

[38] Rohm I,Atiskova Y,Drobnik S,et al. Decreased regulatory T cells in vulnerable atherosclerotic lesions:imbalance between pro- and anti-inflammatory cells in atherosclerosis[J]. Mediators Inflamm,2015,2015:364710.

[39] Lamberti G,Gelsomino F,Brocchi S,et al. New disappearance of complicated atheromatous plaques on rechallenge with PD-1/PD-L1 axis blockade in non-small cell lung cancer patient:follow up of an unexpected event[J]. Ther Adv Med Oncol,2020,12:1758835920913801.

[40] Gelsomino F,Fiorentino M,Zompatori M,et al. Programmed death-1 inhibition and atherosclerosis:can nivolumab vanish complicated atheromatous plaques?[J]. Ann Oncol,2018,29(1):284-286.

[41] Puri R,Nissen SE,Libby P,et al. C-reactive protein,but not low-density lipoprotein cholesterol levels,associate with coronary atheroma regression and cardiovascular events after maximally intensive statin therapy[J]. Circulation,2013,128(22):2395-2403.

[42] Van Der Valk FM,Kuijk C,Verweij SL,et al. Increased haematopoietic activity in patients with atherosclerosis[J]. Eur Heart J,2017,38(6):425-432.

[43] Weitz-schmidt G,Welzenbach K,Brinkmann V,et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site[J]. Nat Med ,2001,7(6):687-692.

[44] Poels K,Neppelenbroek SIM,Kersten MJ,et al. Immune checkpoint inhibitor treatment and atherosclerotic cardiovascular disease:an emerging clinical problem[J]. J Immunother Cancer,2021,9(6):e002916.

[45] Kokolus KM,Zhang Y,Sivik JM,et al. Beta blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice[J]. Oncoimmunology,2018,7(3):e1405205.

[46] Nidorf SM,Fiolet ATL,Mosterd A,et al. Colchicine in patients with chronic coronary disease[J]. N Engl J Med,2020,383(19):1838-1847.

[47] Tardif JC,Kouz S,Waters DD,et al. Efficacy and safety of low-dose colchicine after myocardial infarction[J]. N Engl J Med,2019,381(26):2497-2505.

[48] Kim ST,Bittar M,Kim HJ,et al. Recurrent pseudogout after therapy with immune checkpoint inhibitors:a case report with immunoprofiling of synovial fluid at each flare[J]. J Immunother Cancer,2019,7(1):126.

[49] Cortellini A,Tucci M,Adamo V,et al. Integrated analysis of concomitant medications and oncological outcomes from PD-1/PD-L1 checkpoint inhibitors in clinical practice[J]. J Immunother Cancer,2020,8(2):e001361.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(7):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(7):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(7):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(7):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(7):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(7):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(7):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(7):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]

更新日期/Last Update: 2023-08-18