参考文献/References:
[1] Hodi FS,Chiarion-Sileni V,Gonzalez R,et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067):4-year outcomes of a multicentre,randomised,phase 3 trial[J]. Lancet Oncol,2018,19(11):1480-1492.
[2] Larkin J,Chiarion-Sileni V,Gonzalez R,et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma[J]. N Engl J Med,2019,381(16):1535-1546.
[3] Postow MA,Sidlow R,Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade[J]. N Engl J Med,2018,378(2):158-168.
[4] Haslam A,Prasad V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs[J]. JAMA Netw Open,2019,2(5):e192535.
[5] Salem JE,Manouchehri A,Moey M,et al. Cardiovascular toxicities associated with immune checkpoint inhibitors:an observational,retrospective,pharmacovigilance study[J]. Lancet Oncol,2018,19(12):1579-1589.
[6] Escudier M,Cautela J,Malissen N,et al. Clinical features,management,and outcomes of immune checkpoint inhibitor-related cardiotoxicity[J]. Circulation,2017,136(21):2085-2087.
[7] Wang DY,Salem JE,Cohen JV,et al. Fatal toxic effects associated with immune checkpoint inhibitors:a systematic review and meta-analysis[J]. JAMA Oncol,2018,4(12):1721-1728.
[8] Lindquist M. VigiBase,the WHO Global ICSR Database System:basic facts[J]. Adverse Events,2008,42:409-419.
[9] Patrinely JR Jr, Young AC,Quach H,et al. Survivorship in immune therapy:assessing toxicities,body composition and health-related quality of life among long-term survivors treated with antibodies to programmed death-1 receptor and its ligand[J]. Eur J Cancer,2020,135:211-220.
[10] O’reilly A,Hughes P,Mann J,et al. An immunotherapy survivor population:health-related quality of life and toxicity in patients with metastatic melanoma treated with immune checkpoint inhibitors[J]. Support Care Cancer,2020,28(2):561-570.
[11] Lutgens E,Seijkens TTP. Cancer patients receiving immune checkpoint inhibitor therapy are at an increased risk for atherosclerotic cardiovascular disease[J]. J Immunother Cancer,2020,8(1):e000300.
[12] Coureau M,Meert AP,Berghmans T,et al. Efficacy and toxicity of immune -checkpoint inhibitors in patients with preexisting autoimmune disorders [J]. Front Med (Lausanne),2020,7:137.
[13] Gremese E,Alivernini S,Ferraccioli ES,et al. Checkpoint inhibitors (CPI) and autoimmune chronic inflammatory diseases (ACIDs):tolerance and loss of tolerance in the occurrence of immuno-rheumatologic manifestations[J]. Clin Immunol,2020,214:108395.
[14] Cuddy S,Payne DL,Murphy DJ,et al. Incidental coronary artery calcification in cancer imaging[J]. JACC CardioOncol,2019,1(1):135-137.
[15] Vincent L,Leedy D,Masri SC,et al. Cardiovascular disease and cancer:is there increasing overlap?[J]. Curr Oncol Rep,2019,21(6):47.
[16] Tomita Y,Sueta D,Kakiuchi Y,et al. Acute coronary syndrome as a possible immune-related adverse event in a lung cancer patient achieving a complete response to anti-PD-1 immune checkpoint antibody[J]. Ann Oncol,2017,28(11):2893-2895.
[17] Chen X,Wu Q,You L,et al. Propofol attenuates pancreatic cancer malignant potential via inhibition of NMDA receptor[J]. Eur J Pharmacol,2017,795:150-159.
[18] Bar J,Markel G,Gottfried T,et al. Acute vascular events as a possibly related adverse event of immunotherapy:a single-institute retrospective study[J]. Eur J Cancer,2019,120:122-131.
[19] Drobni ZD,Alvi RM,Taron J,et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque[J]. Circulation,2020,142(24):2299-2311.
[20] Solinas C,Saba L,Sganzerla P,et al. Venous and arterial thromboembolic events with immune checkpoint inhibitors:A systematic review[J]. Thromb Res,2020,196:444-453.
[21] Fernandez DM,Rahman AH,Fernandez NF,et al. Single-cell immune landscape of human atherosclerotic plaques[J]. Nat Med,2019,25(10):1576-1588.
[22] Depuydt MAC,Prange KHM,Slenders L,et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics[J]. Circ Res,2020,127(11):1437-1455.
[23] Winkels H,Ehinger E,Vassallo M,et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry[J]. Circ Res,2018,122(12):1675-1688.
[24] Seijkens TTP,Lutgens E. Cardiovascular oncology:exploring the effects of targeted cancer therapies on atherosclerosis[J]. Curr Opin Lipidol,2018,29(5):381-388.
[25] Padgett LE,Araujo DJ,Hedrick CC,et al. Functional crosstalk between T cells and monocytes in cancer and atherosclerosis[J]. J Leukoc Bio,2020,108(1):297-308.
[26] Gotsman I,Grabie N,Dacosta R,et al. Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice[J]. J Clin Invest,2007,117(10):2974-2982.
[27] Bu DX,Tarrio M,Maganto-garcia E,et al. Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation[J]. Arterioscler Thromb Vasc Biol,2011,31(5):1100-1107.
[28] Buono C,Pang H,Uchida Y,et al. B7-1/B7-2 costimulation regulates plaque antigen-specific T-cell responses and atherogenesis in low-density lipoprotein receptor-deficient mice[J]. Circulation,2004,109(16):2009-2015.
[29] Ewing MM,Karper JC,Abdul S,et al. T-cell co-stimulation by CD28-CD80/86 and its negative regulator CTLA-4 strongly influence accelerated atherosclerosis development[J]. Int J Cardiol,2013,168(3):1965-1974.
[30] Matsumoto T,Sasaki N,Yamashita T,et al. Overexpression of cytotoxic t-lymphocyte-associated antigen-4 prevents atherosclerosis in mice[J]. Arterioscler Thromb Vasc Biol,2016,36(6):1141-1151.
[31] Poels K,van Leent MMT,Reiche ME,et al. Antibody-mediated inhibition of CTLA4 aggravates atherosclerotic plaque inflammation and progression in hyperlipidemic mice[J]. Cells,2020,9(9):1987.
[32] Poels K,Van Leent MMT,Boutros C,et al. Immune checkpoint inhibitor therapy aggravates T cell-driven plaque inflammation in atherosclerosis[J]. JACC CardioOncol,2020,2(4):599-610.
[33] Newman JL,Stone JR. Immune checkpoint inhibition alters the inflammatory cell composition of human coronary artery atherosclerosis[J]. Cardiovasc Pathol,2019,43:107148.
[34] Kusters PJH,Lutgens E,Seijkens TTP. Exploring immune checkpoints as potential therapeutic targets in atherosclerosis[J]. Cardiovasc Res,2018,114(3):368-377.
[35] Tarkin JM,Joshi FR,Rudd JH. PET imaging of inflammation in atherosclerosis[J]. Nat Rev Cardiol,2014,11(8):443-457.
[36] Calabretta R,Hoeller C,Pichler V,et al. Immune checkpoint inhibitor therapy induces inflammatory activity in large arteries[J]. Circulation,2020,142(24):2396-2398.
[37] Jonasson L,Holm J,Skalli O,et al. Regional accumulations of T cells,macrophages,and smooth muscle cells in the human atherosclerotic plaque[J]. Arteriosclerosis,1986,6(2):131-138.
[38] Rohm I,Atiskova Y,Drobnik S,et al. Decreased regulatory T cells in vulnerable atherosclerotic lesions:imbalance between pro- and anti-inflammatory cells in atherosclerosis[J]. Mediators Inflamm,2015,2015:364710.
[39] Lamberti G,Gelsomino F,Brocchi S,et al. New disappearance of complicated atheromatous plaques on rechallenge with PD-1/PD-L1 axis blockade in non-small cell lung cancer patient:follow up of an unexpected event[J]. Ther Adv Med Oncol,2020,12:1758835920913801.
[40] Gelsomino F,Fiorentino M,Zompatori M,et al. Programmed death-1 inhibition and atherosclerosis:can nivolumab vanish complicated atheromatous plaques?[J]. Ann Oncol,2018,29(1):284-286.
[41] Puri R,Nissen SE,Libby P,et al. C-reactive protein,but not low-density lipoprotein cholesterol levels,associate with coronary atheroma regression and cardiovascular events after maximally intensive statin therapy[J]. Circulation,2013,128(22):2395-2403.
[42] Van Der Valk FM,Kuijk C,Verweij SL,et al. Increased haematopoietic activity in patients with atherosclerosis[J]. Eur Heart J,2017,38(6):425-432.
[43] Weitz-schmidt G,Welzenbach K,Brinkmann V,et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site[J]. Nat Med ,2001,7(6):687-692.
[44] Poels K,Neppelenbroek SIM,Kersten MJ,et al. Immune checkpoint inhibitor treatment and atherosclerotic cardiovascular disease:an emerging clinical problem[J]. J Immunother Cancer,2021,9(6):e002916.
[45] Kokolus KM,Zhang Y,Sivik JM,et al. Beta blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice[J]. Oncoimmunology,2018,7(3):e1405205.
[46] Nidorf SM,Fiolet ATL,Mosterd A,et al. Colchicine in patients with chronic coronary disease[J]. N Engl J Med,2020,383(19):1838-1847.
[47] Tardif JC,Kouz S,Waters DD,et al. Efficacy and safety of low-dose colchicine after myocardial infarction[J]. N Engl J Med,2019,381(26):2497-2505.
[48] Kim ST,Bittar M,Kim HJ,et al. Recurrent pseudogout after therapy with immune checkpoint inhibitors:a case report with immunoprofiling of synovial fluid at each flare[J]. J Immunother Cancer,2019,7(1):126.
[49] Cortellini A,Tucci M,Adamo V,et al. Integrated analysis of concomitant medications and oncological outcomes from PD-1/PD-L1 checkpoint inhibitors in clinical practice[J]. J Immunother Cancer,2020,8(2):e001361.
相似文献/References:
[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(7):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(7):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(7):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(7):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(7):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(7):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(7):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(7):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]