参考文献/References:
[1] Hausenloy DJ,Chilian W,Crea F,et al. The coronary circulation in acute myocardial ischaemia/reperfusion injury:a target for cardioprotection[J]. Cardiovasc Res,2019,115(7):1143-1155.
[2] Kalogeris T,Baines CP,Krenz M,et al. Ischemia/Reperfusion[J]. Compr Physiol,2016,7(1):113-170.
[3] Davidson SM,Ferdinandy P,Andreadou I,et al. Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week[J]. J Am Coll Cardiol ,2019,73(1):89-99.
[4] Zhong W,Benissan-Messan DZ,Ma J,et al. Cardiac effects and clinical applications of MG53[J]. Cell Biosci,2021,11(1):115.
[5] Li Y,Meng Q,Wang L,et al.TRIM27 protects against cardiac ischemia-reperfusion injury by suppression of apoptosis and inflammation via negatively regulating p53[J]. Biochem Biophys Res Commun,2021,557:127-134.
[6] Esposito D,Koliopoulos MG,Rittinger K.Structural determinants of TRIM protein function[J]. Biochem Soc Trans,2017,45(1):183-191.
[7] Bell JL,Malyukova A,Holien JK,et al.TRIM16 acts as an E3 ubiquitin ligase and can heterodimerize with other TRIM family members[J]. PLoS One,2012,7(5):e37470.
[8] Sanchez JG,Okreglicka K,Chandrasekaran V,et al. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer[J]. Proc Natl Acad Sci USA,2014,111(7):2494-2499.
[9] Hatakeyama S. TRIM proteins and cancer[J]. Nat Rev Cancer,2011,11(11):792-804.
[10] Sparrer K,Gack MU.TRIM proteins:new players in virus-induced autophagy[J]. PLoS Pathog,2018,14(2):e1006787.
[11] Alloush J,Weisleder N. TRIM proteins in therapeutic membrane repair of muscular dystrophy[J]. JAMA Neurol,2013,70(7):928-931.
[12] Kudryashova E,Kudryashov D,Kramerova I,et al. Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinates actin[J]. J Mol Biol,2005,354(2):413-424.
[13] Borlepawar A,Rangrez AY,Bernt A,et al. TRIM24 protein promotes and TRIM32 protein inhibits cardiomyocyte hypertrophy via regulation of dysbindin protein levels[J]. J Biol Chem,2017,292(24):10180-10196.
[14] Lorenzana-Carrillo MA,Gopal K,Byrne NJ,et al. TRIM35-mediated degradation of nuclear PKM2 destabilizes GATA4/6 and induces P53 in cardiomyocytes to promote heart failure[J]. Sci Transl Med,2022,14(669):m3565.
[15] Jennings RB.Historical perspective on the pathology of myocardial ischemia/reperfusion injury[J]. Circ Res,2013,113(4):428-438.
[16] Hernandez-Deviez DJ,Howes MT,Laval SH,et al. Caveolin regulates endocytosis of the muscle repair protein,dysferlin[J]. J Biol Chem,2008,283(10):6476-6488.
[17] Cai C,Masumiya H,Weisleder N,et al. MG53 nucleates assembly of cell membrane repair machinery[J]. Nat Cell Biol,2009,11(1):56-64.
[18] Wang X,Xie W,Zhang Y,et al. Cardioprotection of ischemia/reperfusion injury by cholesterol-dependent MG53-mediated membrane repair[J]. Circ Res,2010,107(1):76-83.
[19] Cai C,Lin P,Zhu H,et al. Zinc binding to MG53 protein facilitates repair of injury to cell membranes[J]. J Biol Chem,2015,290(22):13830-13839.
[20] Garcia N,Zazueta C,Aguilera-Aguirre L. Oxidative stress and inflammation in cardiovascular disease[J]. Oxid Med Cell Longev,2017,2017:5853238.
[21] Dang X,Qin Y,Gu C,et al. Knockdown of tripartite motif 8 protects H9C2 cells against hypoxia/reoxygenation-induced injury through the activation of PI3K/Akt signaling pathway[J]. Cell Transplant,2020,29:2138941951.
[22] Lu B,Li J,Gui M,et al. Salvianolic acid B inhibits myocardial I/R-induced ROS generation and cell apoptosis by regulating the TRIM8/GPX1 pathway[J]. Pharm Biol,2022,60(1):1458-1468.
[23] Jena KK,Kolapalli SP,Mehto S,et al. TRIM16 controls turnover of protein aggregates by modulating NRF2,ubiquitin system,and autophagy:implication for tumorigenesis[J]. Mol Cell Oncol,2018,5(6):e1532251.
[24] Cui Q,Yan L.Tripartite motif-containing protein 16 protects against myocardial ischemia/reperfusion injury by affecting the Keap1/Nrf2 axis[J]. Cell Tissue Res,2021,386(2):349-363.
[25] Gumpper-Fedus K,Park KH,Ma H,et al. MG53 preserves mitochondrial integrity of cardiomyocytes during ischemia reperfusion-induced oxidative stress[J].Redox Biol,2022,54:102357.
[26] Zhang W,Zhang Y,Zhang H,et al. USP49 inhibits ischemia-reperfusion-induced cell viability suppression and apoptosis in human AC16 cardiomyocytes through DUSP1-JNK1/2 signaling[J]. J Cell Physiol,2019,234(5):6529-6538.
[27] He F,Wu Z,Wang Y,et al. Downregulation of tripartite motif protein 11 attenuates cardiomyocyte apoptosis after ischemia/reperfusion injury via DUSP1-JNK1/2[J]. Cell Biol Int,2022,46(1):148-157.
[28] Zeng G,Lian C,Yang P,et al. E3-ubiquitin ligase TRIM6 aggravates myocardial ischemia/reperfusion injury via promoting STAT1-dependent cardiomyocyte apoptosis[J]. Aging (Albany NY),2019,11(11):3536-3550.
[29] Dhuriya YK,Sharma D. Necroptosis:a regulated inflammatory mode of cell death[J]. J Neuroinflammation,2018,15(1):199.
[30] Wang Q,Park KH,Geng B,et al. MG53 inhibits necroptosis through ubiquitination-dependent RIPK1 degradation for cardiac protection following ischemia/reperfusion injury[J]. Front Cardiovasc Med,2022,9:868632.
[31] Algoet M,Janssens S,Himmelreich U,et al. Myocardial ischemia-reperfusion injury and the influence of inflammation[J]. Trends Cardiovasc Med,2022,S1050-1738(22):00029-9.
[32] Lu Z,Deng M,Ma G,et al. TRIM38 protects H9c2 cells from hypoxia/reoxygenation injury via the TRAF6/TAK1/NF-κB signalling pathway[J]. Peer J,2022,10:e13815.
[33] Ball DP,Taabazuing CY,Griswold AR,et al. Caspase-1 interdomain linker cleavage is required for pyroptosis[J]. Life Sci Alliance,2020,3(3): e202000664.
[34] Shi M,Su F,Dong Z,et al. TRIM16 exerts protective function on myocardial ischemia/reperfusion injury through reducing pyroptosis and inflammation via NLRP3 signaling[J]. Biochem Biophys Res Commun,2022,632:122-128.
[35] Murry CE,Jennings RB,Reimer KA. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium[J]. Circulation,1986,74(5):1124-1136.
[36] Heusch G. Molecular basis of cardioprotection:signal transduction in ischemic pre-,post-, and remote conditioning[J]. Circ Res ,2015,116(4):674-699.
[37] Cao CM,Zhang Y,Weisleder N,et al. MG53 constitutes a primary determinant of cardiac ischemic preconditioning[J]. Circulation,2010,121(23):2565-2574.
[38] Shan D,Guo S,Wu HK,et al. Cardiac ischemic preconditioning promotes MG53 secretion through H2O2-activated protein kinase C-δ signaling[J]. Circulation,2020,142(11):1077-1091.
[39] Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective[J]. Nat Rev Cardiol,2020,17(12):773-789.
[40] Zhang Y,Lv F,Jin L,et al. MG53 participates in ischaemic postconditioning through the RISK signalling pathway[J]. Cardiovasc Res,2011,91(1):108-115.
相似文献/References:
[1]张馨月 涂荣会.Toll样受体与心肌缺血再灌注损伤及其保护作用研究进展[J].心血管病学进展,2020,(2):172.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.018]
ZHANG Xinyue,TU Ronghui.Review Onprotective Effects of Toll-like Receptors on Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(8):172.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.018]
[2]张明 王敬萍.Nur77和GRP78与糖尿病心肌缺血再灌注损伤的关系研究[J].心血管病学进展,2020,(6):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
ZHANG Ming Wang Jingping.Relationship between Nur77 and GRP78 and Myocardial Ischemia-reperfusion Injury in Diabetic Patients[J].Advances in Cardiovascular Diseases,2020,(8):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
[3]韩敏 朱兵 余嘉清 马依彤.程序性细胞死亡与心肌缺血再灌注损伤[J].心血管病学进展,2020,(10):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
HAN MinZHU BingYU JiaqingMA Yitong.  Programmed Cell Death and Myocardial Ischemic Reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(8):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
[4]郭双 邢栋 吕勃.程序性坏死、细胞焦亡与心肌缺血再灌注损伤[J].心血管病学进展,2020,(12):1255.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.008]
GUO Shuang,XING Dong,LYU Bo.NecroptosisPyroptosis and Myocardial Ischemia-reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(8):1255.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.008]
[5]彭石 马茜钰 张丹 张兆元 张锦.铁死亡在心肌缺血再灌注损伤中的作用及靶向治疗研究进展[J].心血管病学进展,2022,(4):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
PENG Shi,MA Qianyu,ZHANG Dan,et al.Role and Targeted Treatment of Ferroptosis?n Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(8):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
[6]郭双 吕勃.细胞凋亡和程序性坏死在心肌缺血再灌注损伤中的作用研究[J].心血管病学进展,2022,(12):1148.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.020]
GUO Shuang L YU Bo.The Role of Apoptosis and Necroptosis in Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(8):1148.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.020]
[7]叶宇恒 钱玲玲 王如兴 李库林.心肌缺血再灌注损伤中铁死亡的调控机制研究进展[J].心血管病学进展,2023,(5):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
YE Yuheng,QIAN Lingling,WANG Ruxing,et al.Regulatory Mechanisms of Ferroptosis in Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(8):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
[8]李俊霖 韩虎魁 程攀科 李刚 陶剑虹.Foxp3+调节性T细胞与心肌缺血再灌注损伤概述[J].心血管病学进展,2023,(9):832.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.015]
LI Junlin,HAN Hukui,CHENG Panke,et al.Overview of Foxp3+ Regulatory T Cells and Myocardial Ischemia R eperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(8):832.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.015]
[9]冉黔松 周厚荣.长链非编码RNA调节自噬在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2024,(3):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]
RAN Qiansong ZHOU Hourong.Long Non-Coding RNA Regulating Autophagy in Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2024,(8):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]
[10]热伊莱·开赛尔 谢翔.琥珀酸在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2024,(8):722.[doi:10.16806/j.cnki.issn.1004-3934.202.08.011]
Reyilai·Kaisaier,XIE Xiang.Succinic Acid and Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2024,(8):722.[doi:10.16806/j.cnki.issn.1004-3934.202.08.011]