参考文献/References:
[1]Sun H,Saeedi P,Karuranga S,et al. IDF Diabetes Atlas:Global,regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract,2022,183:109-119.
[2]Morgan CL,Peters JR,Currie CJ. The changing prevalence of diagnosed diabetes and its associated vascular complications in a large region of the UK[J]. Diabet Med,2010,27(6):673-678.
[3]Haller H,Drab M,Luft FC. The role of hyperglycemia and hyperinsulinemia in the pathogenesis of diabetic angiopathy[J]. Clin Nephrol,1996,46(4):246-255.
[4]Fiorentino TV,Prioletta A,Zuo P,et al. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases[J]. Curr Pharm Des ,2013,19(32):5695-5703.
[5]Faraci FM,Baumbach GL,Heistad DD. Myogenic mechanisms in the cerebral circulation[J]. J Hypertens Suppl,1989,7(4):S61-S64.
[6]Lavigne MC,Ramwell PW,Clarke R. Growth and phenotypic characterization of porcine coronary artery smooth muscle cells[J]. In Vitro Cell Dev Biol Anim,1999,35(3):136-143.
[7]Johnson C,Galis ZS. Matrix metalloproteinase-2 and -9 differentially regulate smooth muscle cell migration and cell-mediated collagen organization[J]. Arterioscler Thromb Vasc Biol,2004,24(1):54-60.
[8]Vásquez R,Farías M,Vega JL,et al. D-glucose stimulation of L-arginine transport and nitric oxide synthesis results from activation of mitogen-activated protein kinases p42/44 and Smad2 requiring functional type II TGF-beta receptors in human umbilical vein endothelium[J]. J Cell Physiol,2007,212(3):626-632.
[9]Wu G,Meininger CJ. Impaired arginine metabolism and NO synthesis in coronary endothelial cells of the spontaneously diabetic BB rat[J]. Am J Physiol,1995,269(4 Pt 2):H1312-H1318.
[10]Dey NB,Lincoln TM. Possible involvement of Cyclic-GMP-dependent protein kinase on matrix metalloproteinase-2 expression in rat aortic smooth muscle cells[J]. Mol Cell Biochem,2012,368(1-2):27-35.
[11]Zeng M,Luo Y,Xu C,et al. Platelet-endothelial cell interactions modulate smooth muscle cell phenotype in an in vitro model of type 2 diabetes mellitus[J]. Am J Physiol Cell Physiol,2019,316(2):C186-C197.
[12]郭志坚,侯凡凡,梁敏,等.晚期糖基化终产物刺激内皮细胞分泌单核细胞趋化蛋白-1信号传导途径[J]. 中华医学杂志,2003(12):71-75.
[13]Rojas A,Romay S,González D,et al. Regulation of endothelial nitric oxide synthase expression by albumin-derived advanced glycosylation end products[J]. Circ Res,2000,86(3):E50-E54.
[14]Ma M,Guo X,Chang Y,et al. Advanced glycation end products promote proliferation and suppress autophagy via reduction of Cathepsin D in rat vascular smooth muscle cells[J]. Mol Cell Biochem,2015,403(1-2):73-83.
[15]于玮,余蕾,魏兰兰,等. 糖基化终产物对血管平滑肌细胞表型转换作用与机制研究[J]. 临床军医杂志,2020,48(2):201-203.
[16]Butoi E,Gan AM,Tucureanu MM,et al. Cross-talk between macrophages and smooth muscle cells impairs collagen and metalloprotease synthesis and promotes angiogenesis[J]. Biochim Biophys Acta,2016,1863(7 Pt A):1568-1578.
[17]Liu J,Ren Y,Kang L,et al. Oxidized low-density lipoprotein increases the proliferation and migration of human coronary artery smooth muscle cells through the upregulation of osteopontin[J]. Int J Mol Med,2014,33(5):1341-1347.
[18]Wang X,Li H,Zhang Y,et al. Suppression of miR-4463 promotes phenotypic switching in VSMCs treated with ox-LDL[J]. Cell Tissue Res,2021,383(3):1155-1165.
[19]Chen KC,Wang YS,Hu CY,et al. OxLDL up-regulates microRNA-29b,leading to epigenetic modifications of MMP-2/MMP-9 genes: a novel mechanism for cardiovascular diseases[J]. FASEB J,2011,25(5):1718-1728.
[20]Liu Y,Jia L,Min D,et al. Baicalin inhibits proliferation and promotes apoptosis of vascular smooth muscle cells by regulating the MEG3/p53 pathway following treatment with ox-LDL[J]. Int J Mol Med,2019,43(2):901-913.
[21]Yang Z,Li JC. Stimulation of endothelin-1 gene expression by insulin via phosphoinositide-3 kinase-glycogen synthase kinase-3beta signaling in endothelial cells[J]. Life Sci,2008,82(9-10):512-518.
[22]Rodriguez-VitaJ,Ruiz-Ortega M,Rupérez M,et al. Endothelin-1,via ETA receptor and independently of transforming growth factor-beta,increases the connective tissue growth factor in vascular smooth muscle cells[J]. Circ Res,2005,97(2):125-134.
[23]Zhang Y,Wang Y,Wang X,et al. Insulin promotes vascular smooth muscle cell proliferation via microRNA-208-mediated downregulation of p21[J]. J Hypertens,2011,29(8):1560-1568.
[24]Mackesy DZ,Goalstone ML. Insulin augments tumor necrosis factor-alpha stimulated expression of vascular cell adhesion molecule-1 in vascular endothelial cells[J]. J Inflamm,2011,8(1):1-10.
[25]Brownlee M. The pathobiology of diabetic complications:a unifying mechanism[J]. Diabetes,2005,54(6):1615-1625.
[26]Koya D,King GL. Protein kinase C activation and the development of diabetic complications[J]. Diabetes,1998,47(6):859-866.
[27]Brownlee M. Advanced protein glycosylation in diabetes and aging[J]. Ann Rev Med,1995,46(1):223-234.
[28]Vendrov AE,Sumida A,Canugovi C,et al. NOXA1-dependent NADPH oxidase regulates redox signaling and phenotype of vascular smooth muscle cell during atherogenesis[J]. Redox Biol,2019,21:101063.
[29]Koulis C,Watson AM,Gray SP,et al. Linking RAGE and Nox in diabetic micro-and macrovascular complications[J]. Diabetes Meta,2015,41(4):272-281.
[30]Jandeleit-Dahm K,Watson A,Soro-Paavonen A. The AGE/RAGE axis in diabetes-accelerated atherosclerosis[J]. Clin Exp Pharmacol Physiol,2010,35(3):329-334.
[31]Vlassara H,Fuh H,Donnelly T,et al. Advanced glycation endproducts promote adhesion molecule (VCAM-1,ICAM-1) expression and atheroma formation in normal rabbits[J]. Mol Med,1995,1(4):447-456.
[32]Bierhaus A,Schiekofer S,Schwaninger M,et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-κB[J]. Diabetes,2001,50(12):2792-2808.
[33]Furmanik M,Chatrou M,van Gorp R,et al. Reactive oxygen-forming Nox5 links vascular smooth muscle cell phenotypic switching and extracellular vesicle-mediated vascular calcification[J]. Circ Res,2020,127(7):911-927.
[34]Bobi J,Garabito M,Solanes N?,et al. Kv1.3 blockade inhibits proliferation of vascular smooth muscle cells in vitro and intimal hyperplasia in vivo[J]. Transl Res,2020,224:40-54.
[35]Gao L,Mann GE. Vascular NAD(P)H oxidase activation in diabetes:a double-edged sword in redox signalling[J]. Cardiovasc Res,2009,82(1):9-20.
[36]Zhang F,Ren X,Zhao M,et al. Angiotensin-(1–7) abrogates angiotensin II-induced proliferation,migration and inflammation in VSMCs through inactivation of ROS-mediated PI3K/Akt and MAPK/ERK signaling pathways[J]. Sci Rep,2016,6(1):1-11.
[37]Ren XS,Tong Y,Ling L,et al. NLRP3 gene deletion attenuates angiotensin II-induced phenotypic transformation of vascular smooth muscle cells and vascular remodeling[J]. Cell Physiol Biochem,2017,44(6):2269-2280.
[38]Wang W,Wu Q,Sui Y,et al. Rutin protects endothelial dysfunction by disturbing Nox4 and ROS-sensitive NLRP3 inflammasome[J]. Biomed Pharmacother,2017,86:32-40.
[39]Kleemann R,Zadelaar S,Kooistra T. Cytokines and atherosclerosis:a comprehensive review of studies in mice[J]. Cardiovasc Res,2008,79(3):360-376.
[40]Hu W,Huang Y. Targeting the platelet-derived growth factor signalling in cardiovascular disease[J]. Clin Exp Pharmacol Physiol,2015,42(12):1221-1224.
[41]Lampugnani MG,Orsenigo F,Gagliani MC,et al. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments[J]. J Cell Biol,2006,174(4):593-604.
[42]Li JH,Huang XR,Zhu HJ,et al. Role of TGF-β signaling in extracellular matrix production under high glucose conditions[J]. Kidney Int,2003,63:2010-2019.
相似文献/References:
[1]张若愚,综述,殷跃辉,等.2型糖尿病及其药物对心房颤动的影响[J].心血管病学进展,2016,(4):337.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.003]
ZHANG Ruoyu,YIN Yuehui.Effect of Type 2 Diabetes Mellitus and Diabetic Drugs on Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(8):337.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.003]
[2]黄秋瑾 胡蓉.高血压合并糖尿病患者血压控制率和控制目标的探讨[J].心血管病学进展,2019,(7):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
HUANG QiujinHU Rong.Discussion on Blood Pressure Control Rate and Control Target in Patients with Hypertension Complicated with Diabetes[J].Advances in Cardiovascular Diseases,2019,(8):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
[3]夏熠 刘飞 夏云龙.糖尿病合并心房颤动的相关研究进展[J].心血管病学进展,2020,(1):27.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.008]
XIA YiLIU FeiXIA Yunlong.Research Progress in Diabetes Mellitus Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2020,(8):27.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.008]
[4]朱珊英,朱国斌.肺动脉高压发病机制新进展[J].心血管病学进展,2020,(3):292.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.019]
ZHU Shanying,ZHU Guobin.Pathogenesis of Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2020,(8):292.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.019]
[5]菲尔凯提·玉山江李昊穆叶赛·尼加提.射血分数保留性心力衰竭合并糖尿病的研究进展[J].心血管病学进展,2020,(4):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
FEIERKAITI·Yushanjiang,LIHao,MUYESAI.Nijiati.Heart Failure With Preserved Ejection Fraction and Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2020,(8):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
[6]张明 王敬萍.Nur77和GRP78与糖尿病心肌缺血再灌注损伤的关系研究[J].心血管病学进展,2020,(6):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
ZHANG Ming Wang Jingping.Relationship between Nur77 and GRP78 and Myocardial Ischemia-reperfusion Injury in Diabetic Patients[J].Advances in Cardiovascular Diseases,2020,(8):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
[7]麦尔耶姆·瓦热斯 罗心平 周鹏.糖尿病与心力衰竭:2型糖尿病是心力衰竭的独立危险因素?[J].心血管病学进展,2020,(7):681.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.002]
Maieryemu·Waresi,LUO Xinping,ZHOU Peng.Diabetes and Heart Failure: Is Type 2 Diabetes an Independent Risk Factor for Heart Failure?[J].Advances in Cardiovascular Diseases,2020,(8):681.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.002]
[8]廖丽萍 周跟东 张晓红.血清甘油三酯葡萄糖乘积指数与代谢性疾病的研究进展[J].心血管病学进展,2020,(11):1189.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
[9]高婧晗 刘飞 杨晓蕾 夏云龙.钙离子稳态的调控在糖尿病相关心房颤动中的作用[J].心血管病学进展,2021,(10):888.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.006]
GAO Jinghan,LIU Fei,YANG Xiaolei,et al.Regulation of Calcium Homeostasis in Diabetes-Related Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2021,(8):888.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.006]
[10]杨帆 吴建军.五味子乙素通过半胱天冬酶凋亡途径对抗高糖诱导的心肌细胞氧化应激损伤[J].心血管病学进展,2022,(2):188.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.022]
YANG Fan,WU Jianjun.Sch.B Protects High Glucose-Induced Cardiomyocytes from Oxidative Stress Injury via Caspase Pathway[J].Advances in Cardiovascular Diseases,2022,(8):188.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.022]