[1]朱珊英,朱国斌.肺动脉高压发病机制新进展[J].心血管病学进展,2020,(3):292-295.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.019]
 ZHU Shanying,ZHU Guobin.Pathogenesis of Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2020,(3):292-295.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.019]
点击复制

肺动脉高压发病机制新进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年3期
页码:
292-295
栏目:
综述
出版日期:
2020-03-25

文章信息/Info

Title:
Pathogenesis of Pulmonary Hypertension
作者:
朱珊英1 朱国斌 2
(1.山西医科大学,山西 太原 030000 2.山西医科大学第二医院心内科,山西 太原 030000)
Author(s):
ZHU Shanying ZHU Guobin
(1.Shanxi Medical Universicy,Taiyuan 030000,Shanxi,China2.Department of Cardiology,The Second Hospital of Shanxi Medical University,Taiyuan 030000,Shanxi,China)
关键词:
肺动脉高压血管重构发病机制
Keywords:
Pulmonary hypertension Vascular remodeling Pathogenesis
DOI:
10.16806/j.cnki.issn.1004-3934.2020.03.019
摘要:
肺动脉高压是指肺血管压力超过一定界值而引起的一系列临床表现,最终导致心功能不全甚至死亡。目前发现离子通道机制、血管活性物质失衡机制、免疫炎症机制和遗传机制均与该病发生有关,现就以上机制做一综述。
Abstract:
Pulmonary hypertension (PH) refers to a series of clinical manifestations caused by pulmonary vascular pressure exceeding a certain threshold,eventually leading to cardiac dysfunction and even death. At present,it is found that the ion channel mechanism,imbalance mechanism of vasoactive substances,immune inflammation mechanism and genetic mechanism are all related to the occurrence of the disease. This paper reviews the above mechanisms

参考文献/References:

[1] Zuo X,Zong F,Wang H,et al. Iptakalim,a novel ATP-sensitive potassium channel opener,inhibits pulmonary arterial smooth muscle cell proliferation by downregulation of PKC-α[J]. J Biomed Res,2011,25(6):392-401.

[2] Fu LC,Lv Y,Zhong Y,et al. Tyrosine phosphorylation of Kv1.5 is upregulated in intrauterine growth retardation rats with exaggerated pulmonary hypertension[J]. Braz J Med Biol Res,2017,50(11):e6237.

[3] Guo S,Shen Y,He G,et al. Involvement of Ca2+-activated K+ channel 3.1 in hypoxia-induced pulmonary arterial hypertension and therapeutic effects of TRAM-34 in rats [J]. Biosci Rep,2017,37(4).pii: BSR20170763.

[4] Barnes EA,Lee L,Barnes SL,et al. β1-Subunit of the calcium-sensitive potassium channel modulates the pulmonary vascular smooth muscle cell response to hypoxia[J]. Am J Physiol Lung Cell Mol Physiol,2018,315(2):L265-L275.

[5] Platoshyn O,Remillard CV,Fantozzi I,et al. Identification of functional voltage-gated Na(+) channels in cultured human pulmonary artery smooth muscle cells[J]. Pflugers Arch,2005,451(2):380-387.

[6] Liu Y,Tian XY,Huang Y,et al. Rosiglitazone attenuated endothelin-1-induced vasoconstriction of pulmonary arteries in the rat model of pulmonary arterial hypertension via?differential regulation of ET-1 receptors[J]. PPAR Res ,2014,2014:374075.

[7] Guo Q,Xu H,Yang X,et al. Notch activation of Ca2+-sensing receptor mediates hypoxia-induced pulmonary hypertension[J]. Hypertens Res,2017,40(2):117-129.

[8] Sala MA,Chen C,Zhang Q,et al. JNK2 up-regulates hypoxia-inducible factors and contributes to hypoxia-induced erythropoiesis and pulmonary hypertension[J]. J Biol Chem,2018,293(1):271-284.

[9] Wang CC,Ying L,Barnes EA,et al. Pulmonary artery smooth muscle cell HIF-1α regulates endothelin expression via microRNA-543[J]. Am J Physiol Lung?Cell?Mol Physiol,2018,315(3):L422-L431.

[10] Vanhoutte PM,Zhao Y,Xu A,et al. Thirty years of saying no:sources,fate,actions,and misfortunes of the endothelium-derived vasodilator mediator[J]. Circ Res,2016,119(2):375-396.

[11] Bredmose PP,Buskop C,L?mo AB. Inhaled nitric oxide might be a?contributing tool for successful resuscitation?of cardiac arrest?related to pulmonary hypertension[J]. Scand J Trauma Resusc Emerg Med,2019,27(1):22.

[12] Mughal A,Sun C,ORourke ST. Activation of large conductance,calcium-activated potassium channels by nitric oxide mediates apelin-induced relaxation of isolated rat coronary arteries[J]. J Pharmacol Exp Ther,2018,366(2):265-273.

[13] 李敏霞,陈亚红. 硫化氢在肺血管重塑中的调节机制及信号通路[J]. 生理科学进展,2018,49(1):74-78.

[14] Christou H,Hudalla H,Michael Z,et al. Impaired pulmonary arterial vasoconstriction and nitric oxide-mediated relaxation underlie severe pulmonary hypertension in the sugen-hypoxia rat model[J]. J Pharmacol Exp Ther,2018,364(2):258-274.

[15] 陈海华,庄兰妹,季志娟,等. 慢阻肺引发肺动脉高压预后评价与ET-1、H2S、NO的相关性研究[J]. 标记免疫分析与临床,2019,26(4):607-611,624.

[16] Sun XZ,Li SY,Tian XY,et al. Effect of Rho kinase inhibitor fasudil on the expression ET-1 and NO in rats with hypoxic pulmonary hypertension[J]. Clin Hemorheol Microcirc,2019,71(1):3-8.

[17] Lee H,Yeom A,Kim KC,et al. Effect of ambrisentan therapy on the expression of endothelin receptor,endothelial nitric oxide synthase and NADPH oxidase 4 in monocrotaline-induced pulmonary arterial hypertension rat model[J]. Korean Circ J,2019,49(9):866-876.

[18] Jernigan NL,Walker BR,Resta TC. Endothelium-derived reactive oxygen species and endothelin-1 attenuate no-dependent pulmonary vasodilation following chronic hypoxia[J]. Am J Physiol Lung Cell Mol Physiol,2004,287(4):L801-L808.

[19] Satwiko MG,Ikeda K,Nakayama K,et al. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension[J]. Biochem Biophys Res Commun,2015,465(3):356-362.

[20] 奚群英,彭晖. 免疫细胞与肺动脉高压[J]. 心血管病学进展,2019,40(3):463-466.

[21] 杨诚忠,李满满,罗羽莎,等. Light在低氧性肺动脉高压形成中的作用及机制[J]. 第三军医大学学报,2018,40(8):643-651.

[22] Hashimoto-Kataoka T,Hosen N,Sonobe T,et al. Interleukin-6/interleukin-21 signaling axis is critical in the pathogenesis of pulmonary arterial hypertension[J]. Proc Natl Acad Sci U S A,2015,112(20):E2677-E2686.

[23] Maston LD,Jones DT,Giermakowska W,et al. Central role of T helper 17 cells in chronic hypoxia-induced pulmonary hypertension [J]. Am J Physiol Lung Cell Mol Physiol,2017,312(5):L609-L624.

[24] 张俊志,李涵葳,张中军,等. TNF-α在先天性体-肺分流性肺动脉高压大鼠中的表达变化[J]. 华中科技大学学报(医学版),2018,47(4):69-73.

[25] 郎明健,赵黎丙,何培根,等. 结缔组织生长因子在心血管疾病的作用及研究进展[J]. 心血管病学进展,2011,32(1):118-121.

[26] Cicha I,Goppelt-Struebe M. Connective tissue growth factor:context-dependent functions and mechanisms of regulation[J]. Biofactors,2009,35(2):200-208.

[27] 胡煜,刘斌. 结缔组织生长因子对血管平滑肌细胞增殖、迁移和细胞外基质沉积影响的研究进展[J]. 国际儿科学杂志,2010,37(2):152-154.

[28] 史小映,张玉顺,龙昌柏. CTGF 与低氧性肺血管重构的关系及波生坦的调控作用[J]. 临床医学研究与实践,2018,3(33):12-14,25.

[29] Zhao W,Wang C,Liu R,et al. Effect of TGF-β1 on the migration and recruitment of mesenchymal stem cells after vascular balloon injury: involvement of matrix metalloproteinase-14[J].Sci Rep,2016,6:21176.

[30] Zhang J,Tang L,Dai F,et al. ROCK inhibitors alleviate myofibroblast transdifferentiation and vascular remodeling via decreasing TGF-β1-mediated RhoGDI expression [J]. Gen Physiol Biophys,2019,38(4):271-280.

[31] 张艳,王志毅,石小枫,等. 同种肝细胞移植细胞排斥反应机理及肝再生增强因子的作用[J]. 免疫学杂志,2007,23(6):668-671.

[32] Nunes H,Lebrec D,Mazmanian M,et al. Role of nitric oxide in hepatopulmonary syndrome in cirrhotic rats[J]. Am J Respir Crit Care Med,2001,164(5):879-885.

[33] Zhang J,Luo B,Tang L,et al. Pulmonary angiogenesis in a rat model of hepatopulmonary syndrome[J]. Gastroenterology,2009,136(3):1070-1080.

[34] Thenappan T,Goel A,Marsboom G,et al. A central role for CD68(+) macrophages in hepatopulmonary syndrome. Reversal by macrophage depletion[J]. Am J Respir Crit Care Med,2011,183(8):1080-1091.

[35] Minatsuki S,Takeda N,Soma K,et al. Murine model of pulmonary artery overflow vasculopathy revealed macrophage accumulation in the lung[J]. Int Heart J,2019,60(2):451-456.

[36] 王彬彬,吴庆华. 原发性肺动脉高压的遗传学研究进展[J].中华医学遗传学杂志,2018,35(4):600-603.

[37] 张春芳,徐双兰,赵方允,等. 表观遗传学在肺动脉高压发病机制和治疗中的研究进展[J].中国药理学通报,2018,34(8):1041-1044.

[38] Opitz I,Kirschner MB. Molecular research in chronic thromboembolic pulmonary hypertension[J]. Int J Mol Sci,2019,20(3),pii: E784.

[39] Sun Y,Lin X,Li L. Identification of biomarkers for schistosoma-associated pulmonary arterial hypertension based on RNA-Seq data of mouse whole lung tissues[J]. Lung,2017,195(3):377-385.

[40] Hayabuchi Y. The action of smooth muscle cell potassium channels in the pathology of pulmonary arterial hypertension[J]. Pediatr Cardiol,2017,38(1):1-14.

相似文献/References:

[1]孟晓冬,单福祥,综述,等.肺动脉高压治疗进展[J].心血管病学进展,2016,(3):319.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.028]
 MENG Xiaodong,SHAN Fuxiang,WANG Yanhui.Advances in Research of Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2016,(3):319.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.028]
[2]张艺韬,综述,曾伟杰,等.左心疾病相关肺动脉高压流行病学[J].心血管病学进展,2016,(4):333.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.002]
 ZHANG Yitao,ZENG Weijie,CHENG Kanglin.Epidemiology of Pulmonary Hypertension due to Left Heart Disease[J].Advances in Cardiovascular Diseases,2016,(3):333.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.002]
[3]汪汉,刘英杰,王燕凤.长链非编码RNA与肺动脉高压[J].心血管病学进展,2019,(6):898.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.015]
 WANG Han,LIU Yingjie,WANG Yanfeng.Long Non-coding RNA in Pulmonary Arterial Hypertension[J].Advances in Cardiovascular Diseases,2019,(3):898.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.015]
[4]汪汉 邓祁 刘英杰.系统性红斑狼疮相关肺动脉高压的诊断、治疗及预后[J].心血管病学进展,2019,(8):1142.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.018]
 WANG Han,DENG Qi,LIU Yingjie.Diagnosis,Treatment and Prognosis of Pulmonary Arterial Hypertension in Systemic Lupus Erythematosus[J].Advances in Cardiovascular Diseases,2019,(3):1142.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.018]
[5]段宇 贾静 步睿 李涛 韦宏.急性伊洛前列素吸入对肺动脉高压患者右心室功能的影响[J].心血管病学进展,2019,(9):1319.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.034]
 DUAN Yu,JIA Jing,BU Rui,et al.The Effect of Acute Iloprost Inhalation on Right Ventricular Function in Pulmonary Arterial Hypertension[J].Advances in Cardiovascular Diseases,2019,(3):1319.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.034]
[6]查玉杰 何庆.肺动脉高压发生发展中的相关因子[J].心血管病学进展,2020,(2):192.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.024]
 ZHA YujieHE Qing.The Relevant Factors in the Development of Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2020,(3):192.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.024]
[7]韩柯,孟祥光,赵育洁.趋化因子及其受体在肺动脉高压中的研究进展[J].心血管病学进展,2020,(3):296.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.020]
 HAN Ke,MENG Xiangguang,ZHAO Yujie.Chemokines and Their Receptors in Pulmonary Arterial Hypertension[J].Advances in Cardiovascular Diseases,2020,(3):296.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.020]
[8]刘超 曲杰 王明娟 徐倩 范彦芳 周晓慧 单伟超.肺动脉高压对扩张型心肌病预后的影响[J].心血管病学进展,2020,(4):424.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.023]
 LIU ChaoQU JieWANG MingjuanXU QianFAN YanfangZHOU XiaohuiSAN Weichao.The Effect of Pulmonary Hypertension on the Prognosis of Dilated Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(3):424.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.023]
[9]向杰 刘明鑫 张伟 黄从新.基于生物信息学分析探究肺动脉高压关键基因和通路[J].心血管病学进展,2020,(4):428.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.024]
 Xiang JieLiu MingxinZhang WeiHuang Congxin.Bioinformatics Analysis of Key Genes and Pathways in Pulmonary Arterial Hypertension[J].Advances in Cardiovascular Diseases,2020,(3):428.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.024]
[10]刘雪鸢 徐燕萍 殷跃辉.交感神经去除术在肺动脉高压治疗中的研究进展[J].心血管病学进展,2020,(5):480.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.010]
 LIU Xueyuan,XU Yanping,YIN Yuehui.Sympathetic Denervation in Treatment of Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2020,(3):480.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.010]

备注/Memo

备注/Memo:
收稿时间:2019-08-26 通讯作者:朱国斌,E-mail:18834181205@139.com离子通道机制
更新日期/Last Update: 2020-05-20