参考文献/References:
[1] Roth GA,Mensah GA,Johnson CO,et al. Global burden of cardiovascular diseases and risk factors,1990-2019:update from the GBD 2019 study[J]. J Am Coll Cardiol,2020,76(25):2982-3021.
[2] 中国心血管健康与疾病报告编写组,胡盛寿. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志,2022,37(6):553-578.
[3] Han Y,Yang W,Cui W,et al. Development of functional hydrogels for heart failure[J]. J Mater Chem B,2019,7(10):1563-1580.
[4] Sack KL,Aliotta E,Choy JS,et al. Intra-myocardial alginate hydrogel injection acts as a left ventricular mid-wall constraint in swine[J]. Acta Biomater,2020,111:170-180.
[5] Sack KL,Aliotta E,Choy JS,et al. Effect of intra-myocardial Algisyl-LVRTM injectates on fibre structure in porcine heart failure[J]. J Mech Behav Biomed Mater,2018,87:172-179.
[6] Choy JS,Leng S,Acevedo-Bolton G,et al. Efficacy of intramyocardial injection of Algisyl-LVR for the treatment of ischemic heart failure in swine[J]. Int J Cardiol,2018,255:129-135.
[7] Mann DL,Lee RJ,Coats AJS,et al. One-year follow-up results from AUGMENT-HF:a multicentre randomized controlled clinical trial of the efficacy of left ventricular augmentation with Algisyl in the treatment of heart failure[J]. Eur J Heart Fail,2016,18(3):314-325.
[8] Rao SV,Zeymer U,Douglas PS,et al. Bioabsorbable intracoronary matrix for prevention of ventricular remodeling after myocardial infarction[J]. J Am Coll Cardiol,2016,68(7):715-723.
[9] Traverse JH,Henry TD,Dib N,et al. First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients[J]. JACC Basic Transl Sci,2019,4(6):659-669.
[10] He S,Wu J,Li SH,et al. The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure[J]. Biomaterials,2020,258:120285.
[11] Contessotto P,Pandit A. Therapies to prevent post-infarction remodelling:from repair to regeneration[J]. Biomaterials,2021,275:120906.
[12] Xing M,Jiang Y,Bi W,et al. Strontium ions protect hearts against myocardial ischemia/reperfusion injury[J]. Sci Adv,2021,7(3):eabe0726.
[13] Ding Y,Zhao AS,Liu T,et al. An injectable nanocomposite hydrogel for potential application of vascularization and tissue repair[J]. Ann Biomed Eng,2020,48(5):1511-1523.
[14] Fu B,Wang X,Chen Z,et al. Improved myocardial performance in infarcted rat heart by injection of disulfide-cross-linked chitosan hydrogels loaded with basic fibroblast growth factor[J]. J Mater Chem B,2022,10(4):656-665.
[15] Wei X,Chen S,Xie T,et al. An MMP-degradable and conductive hydrogel to stabilize HIF-1α for recovering cardiac functions[J]. Theranostics,2022,12(1):127-142.
[16] Qi Q,Zhu Y,Liu G,et al. Local intramyocardial delivery of bioglass with alginate hydrogels for post-infarct myocardial regeneration[J]. Biomed Pharmacother,2020,129:110382.
[17] Chen R,Zhu C,Xu L,et al. An injectable peptide hydrogel with excellent self-healing ability to continuously release salvianolic acid B for myocardial infarction[J]. Biomaterials,2021,274:120855.
[18] Zhang Q,Wang L,Wang S,et al. Signaling pathways and targeted therapy for myocardial infarction[J]. Signal Transduct Target Ther,2022,7(1):78.
[19] Ding J,Yao Y,Li J,et al. A reactive oxygen species scavenging and O2 generating injectable hydrogel for myocardial infarction treatment in vivo[J]. Small,2020,16(48):e2005038.
[20] Everett BM,MacFadyen JG,Thuren T,et al. Inhibition of interleukin-1β and reduction in atherothrombotic cardiovascular events in the CANTOS trial[J]. J Am Coll Cardiol,2020,76(14):1660-1670.
[21] Nidorf SM,Fiolet ATL,Mosterd A,et al. Colchicine in patients with chronic coronary disease[J]. N Engl J Med,2020,383(19):1838-1847.
[22] Chen Y,Shi J,Zhang Y,et al. An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction[J]. J Mater Chem B,2020,8(5):980-992.
[23] Morine KJ,Qiao X,York S,et al. Bone morphogenetic protein 9 reduces cardiac fibrosis and improves cardiac function in heart failure[J]. Circulation,2018,138(5):513-526.
[24] Wu Y,Chang T,Chen W,et al. Release of VEGF and BMP9 from injectable alginate based composite hydrogel for treatment of myocardial infarction[J]. Bioact Mater,2021,6(2):520-528.
[25] Raeeszadeh-Sarmazdeh M,Do LD,Hritz BG. Metalloproteinases and their inhibitors:potential for the development of new therapeutics[J]. Cells,2020,9(5):1313.
[26] Cerisano G,Buonamici P,Valenti R,et al. Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling:the TIPTOP trial[J]. Eur Heart J,2014,35(3):184-191.
[27] Fan Z,Fu M,Xu Z,et al. Sustained release of a peptide-based matrix metalloproteinase-2 inhibitor to attenuate adverse cardiac remodeling and improve cardiac function following myocardial infarction[J]. Biomacromolecules,2017,18(9):2820-2829.
[28] Müller P,Lemcke H,David R. Stem cell therapy in heart diseases—Cell types,mechanisms and improvement strategies[J]. Cell Physiol Biochem,2018,48(6):2607-2655.
[29] Zhu S,Yu C,Liu N,et al. Injectable conductive gelatin methacrylate/oxidized dextran hydrogel encapsulating umbilical cord mesenchymal stem cells for myocardial infarction treatment[J]. Bioact Mater,2022,13:119-134.
[30] He X,Wang Q,Zhao Y,et al. Effect of intramyocardial grafting collagen scaffold with mesenchymal stromal cells in patients with chronic ischemic heart disease:a randomized clinical trial[J]. JAMA Netw Open,2020,3(9):e2016236.
[31] Zheng Z,Tan Y,Li Y,et al. Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction[J]. J Control Release,2021,335:216-236.
[32] Wang Q,Zhang L,Sun Z,et al. HIF-1α overexpression in mesenchymal stem cell-derived exosome-encapsulated arginine-glycine-aspartate(RGD) hydrogels boost therapeutic efficacy of cardiac repair after myocardial infarction[J]. Mater Today Bio,2021,12:100171.
[33] Lee CSD,Moyer HR,Gittens RAI,et al. Regulating in vivo calcification of alginate microbeads[J]. Biomaterials,2010,31(18):4926-4934.
[34] Garbern JC,Minami E,Stayton PS,et al. Delivery of basic fibroblast growth factor with a pH-responsive,injectable hydrogel to improve angiogenesis in infarcted myocardium[J]. Biomaterials,2011,32(9):2407-2416.
[35] Fan C,Shi J,Zhuang Y,et al. Myocardial-infarction-responsive smart hydrogels targeting matrix metalloproteinase for on-demand growth factor delivery[J]. Adv Mater,2019,31(40):e1902900.
[36] Yao SY,Shen ML,Li SJ,et al. Application of a mechanically responsive,inflammatory macrophage-targeted dual-sensitive hydrogel drug carrier for atherosclerosis[J]. Colloids Surf B Biointerfaces,2020,186:110718.
相似文献/References:
[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(1):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(1):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(1):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(1):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on
Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(1):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(1):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[8]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(1):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[9]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(1):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[10]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(1):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[11]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(1):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[12]谢建华,赵鸿泽,刘剑雄.MicroRNA在心肌梗死后左室重塑和心力衰竭发展中的研究现状[J].心血管病学进展,2020,(3):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]
XIE Jianhua,ZHAO Hongze,LIU Jianxiong.MicroRNA in Development of Left Ventricular Remodeling and Heart Failure after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(1):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]
[13]李彬 蒋学俊.水凝胶改善心肌梗死后心脏生物力学重构的研究进展[J].心血管病学进展,2022,(8):691.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.006]
LI Bin,JIANG Xuejun.Biomechanics of Hydrogel After Myocardial Infarction[J].Advances in Cardiovascular Diseases,2022,(1):691.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.006]
[14]韩冰 来春林.黑色素瘤缺乏因子2炎症小体在心血管疾病中的研究进展[J].心血管病学进展,2023,(11):986.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.007]
HAN Bing,LAI Chunlin.Absent In Melanoma 2 Inflammasome in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2023,(1):986.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.007]
[15]王昕瑜 张婷婷 邢邯英 王忠丽 郭艺芳.miR-21在心肌缺血损伤相关信号通路中的作用[J].心血管病学进展,2024,(11):998.[doi:10.16806/j.cnki.issn.1004-3934.2024.11.009]
WANG Xinyu,ZHANG Tingting,XING Hanying,et al.The Effect of miR-21 in Signaling Pathway Associated with Myocardical Ischemia Injury[J].Advances in Cardiovascular Diseases,2024,(1):998.[doi:10.16806/j.cnki.issn.1004-3934.2024.11.009]