[8] Arbustini E,Morbini P,D’Armini AM,et al. Plaque composition in plexogenic and thromboembolic pulmonary hypertension:the critical role of thrombotic material in pultaceous core formation[J]. Heart,2002,88(2):177-182.?/div>
[9] Delbosc S,Bayles RG,Laschet J,et al. Erythrocyte efferocytosis by the arterial wall promotes oxidation in early-stage atheroma in humans[J]. Front Cardiovasc Med,2017,4:43.?/div>
[10] Dybas J,Bulat K,Blat A,et al. Age-related and atherosclerosis-related erythropathy in ApoE/LDLR-/- mice[J]. Biochim Biophys Acta Mol Basis Dis,2020,1866(12):165972.
[11] Uydu HA,Bostan M,Atak M,et al. Cholesterol forms and traditional lipid profile for projection of atherogenic dyslipidemia:lipoprotein subfractions and erythrocyte membrane cholesterol[J]. J Membr Biol,2014,247(2):127-134.
[12] Schaffer A,Verdoia M,Cassetti E,et al. Impact of red blood cells count on the relationship between high density lipoproteins and the prevalence and extent of coronary artery disease:a single centre study[corrected][J]. J Thromb Thrombolysis,2015,40(1):61-68.
[13] Ouimet M,Barrett TJ,Fisher EA. HDL and reverse cholesterol transport[J]. Circ Res,2019,124(10):1505-1518.
[14] Lee-Rueckert M,Escola-Gil JC,Kovanen PT. HDL functionality in reverse cholesterol transport—Challenges in translating data emerging from mouse models to human disease[J]. Biochim Biophys Acta,2016,1861(7):566-583.
[15] Cedó L,Metso J,Santos D,et al. LDL receptor regulates the reverse transport of macrophage-derived unesterified cholesterol via concerted action of the HDL-LDL axis:insight from mouse models[J]. Circ Res,2020,127(6):778-792.
[16] Xu X,Song Z,Mao B,et al. Apolipoprotein A1-related proteins and reverse cholesterol transport in antiatherosclerosis therapy:recent progress and future perspectives[J]. Cardiovasc Ther,2022,2022:4610834.
[17] Bovenberg SA,Klop B,Alipour A,et al. Erythrocyte-associated apolipoprotein B and its relationship with clinical and subclinical atherosclerosis[J]. Eur J Clin Invest,2012,42(4):365-370.
[18] de Vries MA,van Santen SS,Klop B,et al. Erythrocyte-bound apolipoprotein B in atherosclerosis and mortality[J]. Eur J Clin Invest,2017,47(4):289-296.
[19] Feuerborn R,Besser M,Potì F,et al. Elevating endogenous sphingosine-1-phosphate (S1P) levels improves endothelial function and ameliorates atherosclerosis in low density lipoprotein receptor-deficient (LDL-R-/-) Mice[J]. Thromb Haemost,2018,118(8):1470-1480.
[20] Thuy AV,Reimann CM,Hemdan NY,et al. Sphingosine 1-phosphate in blood:function,metabolism,and fate[J]. Cell Physiol Biochem,2014,34(1):158-171.
[21] Christensen PM,Bosteen MH,Hajny S,et al. Apolipoprotein M mediates sphingosine-1-phosphate efflux from erythrocytes[J]. Sci Rep,2017,7(1):14983.
[22] Dai L,Chu SP,Wang ZH,et al. APOC3 promotes TNF-alpha-induced expression of JAM-1 in endothelial cell via PI3K-IKK2-p65 pathway[J]. Cardiovasc Pathol,2019,41:11-17.
[23] Zha Y,Lu Y,Zhang T,et al. CRISPR/Cas9-mediated knockout of APOC3 stabilizes plasma lipids and inhibits atherosclerosis in rabbits[J]. Lipids Health Dis,2021,20(1):180.
[24] Tziakas DN,Chalikias GK,Stakos D,et al. The role of red blood cells in the progression and instability of atherosclerotic plaque[J]. Int J Cardiol,2010,142(1):2-7.
[25] Tziakas DN,Kaski JC,Chalikias GK,et al. Total cholesterol content of erythrocyte membranes is increased in patients with acute coronary syndrome:a new marker of clinical instability?[J]. J Am Coll Cardiol,2007,49(21):2081-2089.
[26] Namazi G,Pourfarzam M,Jamshidi Rad S,et al. Association of the total cholesterol content of erythrocyte membranes with the severity of disease in stable coronary artery disease[J]. Cholesterol,2014,2014:821686.
[27] Zhong Y,Tang H,Zeng Q,et al. Total cholesterol content of erythrocyte membranes is associated with the severity of coronary artery disease and the therapeutic effect of rosuvastatin[J]. Ups J Med Sci,2012,117(4):390-398.
[28] Grebe A,Latz E. Cholesterol crystals and inflammation[J]. Curr Rheumatol Rep,2013,15(3):313.
[29] Andersen CBF,St?kilde K,Saederup KL,et al. Haptoglobin[J]. Antioxid Redox Signal,2017,26(14):814-831.
[30] Bozza MT,Jeney V. Pro-inflammatory actions of heme and other hemoglobin-derived DAMPs[J]. Front Immunol,2020,11:1323.
[31] Wischmann P,Kuhn V,Suvorava T,et al. Anaemia is associated with severe RBC dysfunction and a reduced circulating NO pool:vascular and cardiac eNOS are crucial for the adaptation to anaemia[J]. Basic Res Cardiol,2020,115(4):43.
[32] Potor L,Hendrik Z,Patsalos A,et al. Oxidation of hemoglobin drives a proatherogenic polarization of macrophages in human atherosclerosis[J]. Antioxid Redox Signal,2021,35(12):917-950.
[33] Zhu Y,Xian X,Wang Z,et al. Research progress on the relationship between atherosclerosis and inflammation[J]. Biomolecules,2018,8(3):80.?/div>
[34] Ouyang S,You J,Zhi C,et al. Ferroptosis:the potential value target in atherosclerosis[J]. Cell Death Dis,2021,12(8):782.
[35] Zhao ZW,Zhang M,Chen LY,et al. Heat shock protein 70 accelerates atherosclerosis by downregulating the expression of ABCA1 and ABCG1 through the JNK/Elk-1 pathway[J]. Biochim Biophys Acta Mol Cell Biol Lipids,2018,1863(8):806-822.
[36] Kotla S,Singh NK,Rao GN. ROS via BTK-p300-STAT1-PPARγ signaling activation mediates cholesterol crystals-induced CD36 expression and foam cell formation[J]. Redox Biol,2017,11:350-364.
[37] Tziakas DN,Chalikias G,Pavlaki M,et al. Lysed erythrocyte membranes promote vascular calcification[J]. Circulation,2019,139(17):2032-2048.
[38] B?m EW,Pavlaki M,Chalikias G,et al. Colocalization of erythrocytes and vascular calcification in human atherosclerosis:a systematic histomorphometric analysis[J]. TH Open,2021,5(2):e113-e124.