参考文献/References:
[1]Lee RC,Feinbaum RL,Ambros V,etal. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J].Cell,1993,75(5):843-854.
[2]Reinhart BJ,Slack FJ,Basson M,et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J].Nature,2000,403(6772):901-906.
[3]Varzideh F,Kansakar U,Donkor K,et al. Cardiac remodeling after myocardial infarction:functional contribution of microRNAs to inflammation and fibrosis[J]. Front Cardiovasc Med,2022,9:863238.
[4]沐嘉馨,林利. 微小RNA——心血管疾病的新兴要素[J]. 医学研究杂志,2020,49(8):9-13.
[5]Wojciechowska A,Braniewska A,Kozar-Kamińska K. MicroRNAin cardiovascular biology and disease[J]. Adv Clin Exp Med,2017,26(5):865-874.
[6]Hu F,Zheng L,Liu S,et al. Avoidance of vagal response during circumferential pulmonary vein isolation:effect of initiatingisolation from right anterior ganglionated plexi[J]. Circ Arrhythm Electrophysiol,2019,12(12):e007811.
[7]Qin M,Zeng C,Liu X. The cardiac autonomic nervous system:a target for modulation of atrial fibrillation[J]. Clin Cardiol ,2019,42(6):644-652.
[8]Ha?ssaguerre M,Ja?s P,Shah DC,et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins[J]. N Engl J Med,1998,339(10):659-666.
[9]Jalife J,Berenfeld O,Mansour M. Mother rotors and fibrillatory conduction:a mechanism of atrial fibrillation[J]. Cardiovasc Res ,2002,54(2):204-216.
[10]Mandapati R,Skanes A,Chen J,et al. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart[J]. Circulation,2000,101(2):194-199.
[11]Shi S,Tang Y,Zhao Q,et al. Prevalence and risk of atrial fibrillation in China:a national cross-sectional epidemiological study[J]. Lancet Reg Health West Pac,2022,23:100439.
[12]Zhou Z,Hu D. An epidemiological study on the prevalence of atrial fibrillation in the Chinese population of mainland China[J]. J Epidemiol,2008,18(5):209-216.
[13]Chugh SS,Havmoeller R,Narayanan K,et a1. Worldwide epidemiology of atrial fibrillation:a Global Burden of Disease 2010 Study[J]. Circulation,2014,129(8):837-847.
[14]Kirchhof P,Benussi S,Kotecha D,et a1. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS[J]. Eur Heart J,2016,37(38):2893-2962.
[15]张澍,杨艳敏,黄从新,等. 中国心房颤动患者卒中预防规范[J]. 中华心律失常学杂志,2015,19(3):162-173.
[16]Zhao Y,Samal E,Srivastava D. Serum response factor regulate samuscle-specif microRNA that targets Hand2 during cardiogenesis [J]. Nature,2005,436(7048):214-220.
[17]Girmatsion Z,Biliczki P,Bonauer A,et al. Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation[J]. Heart Rhythm,2009,6(12):1802-1809.
[18]Li YD,Hong YF,Yusufuaji Y,et al. Altered expression of hyperpolarization-activated cyclic nucleotide-gated channels and microRNA-1 and -133 in patients with age-associated atrial fibrillation[J]. Mol Med Rep,2015,12(3):3243-3248.
[19]Jia X,Zheng S,Xie X,et al. MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expresssion:an atrial tachypacing rabbit model [J]. PLoS One,2013,8(12):e85639.
[20]Paul A,Pai PG,Ariyannur PS,et al. Diagnostic accuracy of microRNA 208b level with respect to different types of atrial fibrillation[J]. Indian Heart J,2021,73(4):506-510.
[21]Ca?ón S,Caballero R,Herraiz-Martínez A,et al. miR-208b upregulation interferes with calcium handling in HL-1 atrial myocytes:implications in human chronic atrial fibrillation[J].J Mol Cell Cardiol,2016,99:162-173.
[22]Du J,Li Z,Wang X,et al. Long noncoding RNA TCONS-00106987 promotes atrial electrical remodelling during atrial fibrillation by sponging miR-26 to regulateKCNJ2[J]. J Cell Mol Med,2020,24(21):12777-12788.
[23]Luo X, Pan Z,Shan H, et al. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation.[J] J Clin Invest ,2013 123(5):1939-51.
[24]Lu Y,Zhang Y,Wang N,et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation[J]. Circulation,2010,122(23):2378-2387.
[25]王玺. 血浆在心房颤动中的表达水平及其临床意义[J]. 郑州大学硕士学位论文,2013,1-63.
[26]Biliczki P ,Boon RA,Girmatsion Z,et al. Age-related regulation and region-specific distribution of ion channel subunits promoting atrial fibrillation in human left and right atria[J]. Europace,2019,21(8):1261-1269.
[27]Li Z,Wang X,Wang W,et al. Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation:TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C[J]. J Mol Cell Cardiol,2017,108:73-85.
[28]Xiao S,Zhou Y,Liu A,et al. Uncovering potential novel biomarkers and immune infiltration characteristics in persistent atrial fibrillation using integrated bioinformatics analysis[J]. Math Biosci Eng,2021,18(4):4696-4712.
[29]Zhu Y,Feng Z,Cheng W,et a1. MicroRNA-34a mediates atrial fibrillation through regulation of Ankyrin-B expression[J]. Mol Med Rep,2018,17(6):8457-8465.
[30]Ling TY,Wang XL,Chai Q,et a1. Regulation of the SK3 channel by microRNA-499—Potential role in atrial fibrillation[J]. Heart Rhythm,2013,10(7):1001-1009.
[31]Ling TY,Wang XL,Chai Q,et a1. Regulation of cardiac CACNB2 by microRNA-499:potential role in atrial fibrillation[J]. BBA Clin,2017,7:78-84.
[32]Cordeiro JM,Marieb M,Pfeiffer R,et a1. Accelerated inactivation of the L-type calcium current due to a mutation in CACNB2b underlies Brugada syndrome[J]. J Mol Cell Cardiol,2009,46(5):695-703.
[33]冯桂荣,钟国强,蒋智渊,等. microRNA-155在慢性心房颤动心房3型小电导钙激活钾通道重构中的作用[J]. 临床心血管病杂志,2017,33(7):662-666.
[34]Wang J,Ye Q,Bai S,et a1. Inhibiting microRNA-155 attenuates atrial fibrillation by targeting CACNA1C[J]. J Mol Cell Cardiol,2021,155:58-65.
[35]王咏春,刘芳,张续腾,等. miR-21在心房颤动中的作用研究进展[J]. 医学综述,2021,27(18):3669-3773.
[36]朱瓦力,伍伟锋. 心房颤动患者心房组织中微小RNA-21和金属基质蛋白酶-2表达水平改变及意义[J]. 中华心律失常学杂志,2011,15(2):132-135.
[37]Chen H,Zhang F,Zhang YL,et a1. Relationship between circulating miRNA-21,atrial fibrosis,and atrial fibrillation in patients with atrial enlargement[J]. Ann Palliat Med,2021,10(12):12742-12749.
[38]吴双. MicroRNA-200a在心脏纤维化的调控机制及血浆大内皮素-1对心房颤动患者预后的影响[J]. 协和医学院,2019,1-107.
[39]施鹏. MicroRNA-200a调控心肌成纤维细胞增殖活化的机制研究[J]. 安徽医科大学硕士研究论文. 2017,1-59.
[40]何艳. MicroRNA-101在心房颤动中心房重构中的作用研究.广西医科大学硕士研究论文. 2017,1-71.
[41]Zhu J,Zhu N,Xu J. miR-101a-3p overexpression prevents acetylcholine-CaCl2-induced atrial fibrillation in rats via reduction of atrial tissue fibrosis,involving inhibition of EZH2[J]. J Mol Med Rep,2021,24(4):740.
[42]朱丹,杨良瑞,应佐华. MicroRNA-29a调控心房颤动模型大鼠心房肌细胞凋亡的机制研究[J]. 中国循证心血管医学杂志,2021,13(3):302-305.
[43]Lv X,Lu P,Hu Y,et a1. Overexpression of miR-29b-3p inhibits atrial remodeling in rats by targeting PDGF-B signaling pathway[J]. Oxid Med Cell Longev,2021,2021:3763529.
[44]Qiao G,Xia D,Cheng Z,et al. miR-132 in atrial fibrillation directly targets connective tissue growth factor[J]. Mol Med Rep,2017,16(4):4143-4150.
[45]Cheng WL,Kao YH,Chao TF,et al. MicroRNA-133 suppresses ZFHX3-dependent atrial remodelling and arrhythmi[J]. Acta Physiol(Oxf),2019,227(3):e13322.
[46]Li H,Li S,Yu B,et al. Expression of miR-133 and miR-30 in chronic atrial fibrillation in canines[J]. Mol Med Rep,2012,5(6):1457-1460.
[47]Shan H,Zhang Y,Lu Y,et al. Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines[J]. Cardiovasc Res,2009,83(3):465-472.
相似文献/References:
[1]贺鹏康,周菁.心房颤动治疗新技术——冷冻球囊消融[J].心血管病学进展,2016,(1):1.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.001]
HE Pengkang,ZHOU Jing.Cryoballoon Ablation, A Novel Technology for Atrial Fibrillation Treatment[J].Advances in Cardiovascular Diseases,2016,(4):1.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.001]
[2]都明辉,施海峰*,佟佳宾,等.心房颤动消融相关性无症状性脑缺血[J].心血管病学进展,2016,(1):3.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.002]
DU Minghui,SHI Haifeng*,TONG Jiabin,et al.Silent Cerebral Ischemia Related to Atrial Fibrillation Ablation[J].Advances in Cardiovascular Diseases,2016,(4):3.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.002]
[3]郑环杰,综述,肖骅,等.心房颤动抗栓治疗研究进展[J].心血管病学进展,2016,(2):142.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.012]
ZHENG Huanjie,XIAO Hua.Progress of Antithrombotic Therapy in Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(4):142.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.012]
[4]张清,综述,罗素新,等.新型Xa 因子抑制剂———依度沙班在心房颤动患者抗凝治疗中的研究进展[J].心血管病学进展,2016,(2):151.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.014]
ZHANG Qing,LUO Suxin,TANG Jiong.Novel Factor Xa Inhibitors—Edoxaban in Prevention of Stroke in
Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(4):151.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.014]
[5]胡红玲,综述,罗素新,等.预防非瓣膜性心房颤动性脑卒中的治疗新进展[J].心血管病学进展,2016,(3):250.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.009]
HU Hongling,LUO Suxin.New Progress in the Treatment for Cerebral Apoplexy of Nonvalvular
Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(4):250.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.009]
[6]王超,杨国澍,综述,等.关附甲素治疗心房颤动的研究进展[J].心血管病学进展,2016,(3):254.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.010]
WANG Chao,YANG Guoshu,CAI Lin,et al.Research Progress of the Treatment of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(4):254.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.010]
[7]徐小东,综述,杨东辉,等.决奈达隆治疗心房颤动的现状及展望[J].心血管病学进展,2016,(4):368.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.011]
XU Xiaodong,YANG Donghui.Status and Prospect of Dronedarone in Treating Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(4):368.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.011]
[8]张莎,储国俊,吴弘.经导管左心耳封堵术的临床应用进展[J].心血管病学进展,2015,(5):547.[doi:10.3969/j.issn.1004-3934.2015.05.006]
ZHANG Sha,CHU Guojun,WU Hong.Clinial Application Advances in Left Atrial Appendage Closure[J].Advances in Cardiovascular Diseases,2015,(4):547.[doi:10.3969/j.issn.1004-3934.2015.05.006]
[9]汪俊,杨浩.心房颤动射频消融的术式演变[J].心血管病学进展,2015,(5):574.[doi:10.3969/j.issn.1004-3934.2015.05.013]
WANG Jun,YANG Hao.Evolution of Radiofrequency Ablation of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2015,(4):574.[doi:10.3969/j.issn.1004-3934.2015.05.013]
[10]赵璐,苏立.心房颤动与离子通道重构研究进展[J].心血管病学进展,2015,(5):580.[doi:10.3969/j.issn.1004-3934.2015.05.014]
ZHAO Lu,SU Li.Research Progress of Atrial Fibrillation and Ion Channel Remodeling[J].Advances in Cardiovascular Diseases,2015,(4):580.[doi:10.3969/j.issn.1004-3934.2015.05.014]