[1]刘惠娟 穆耶赛尔·麦麦提明 冯艳.miRNA与心房颤动关系的最新进展[J].心血管病学进展,2023,(4):321.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.008]
 LIU HuijuanMuyesaier·MaimaitiyimingFENG Yan.Rececct Progress in the Relationship Between miRNA and?trial Fibrillation[J].Advances in Cardiovascular Diseases,2023,(4):321.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.008]
点击复制

miRNA与心房颤动关系的最新进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年4期
页码:
321
栏目:
综述
出版日期:
2023-04-25

文章信息/Info

Title:
Rececct Progress in the Relationship Between miRNA and?trial Fibrillation
作者:
刘惠娟 穆耶赛尔·麦麦提明 冯艳
(新疆维吾尔自治区人民医院心电学科,新疆 乌鲁木齐 830001)
Author(s):
LIU HuijuanMuyesaier·MaimaitiyimingFENG Yan
(Department of Electrocardiography,Xinjiang Uygur Autonomous Region People’s Hospital,Urumqi 830001, Xinjiang,China)
关键词:
微小核糖核酸心房颤动电重构结构重构
Keywords:
MicroRNAAtrial fibrillationElectrical remodelingStructural remodeling
DOI:
10.16806/j.cnki.issn.1004-3934.2023.04.008
摘要:
微小核糖核酸(miRNA)是一类内生的长度为19~24个核苷酸的单链非编码RNA。它通过调节靶目标信使核糖核酸(mRNA)的降解和翻译,指导RNA诱导沉默复合体调节靶基因表达,在细胞生理过程中发挥重要作用,是转录后水平调控基因表达的重要分子。目前miRNA与心血管疾病之间的关系在国内外也成为研究的热点,现选取相关miRNA与心血管疾病中心房颤动的电重构与结构重构之间的关系做一综述。
Abstract:
Picorbonucleic acid ( referred to as miRNA) are a class of endogenous small RNA about 19 to 24 ,Belong to single chain non - coding RNA. It regulates the degradation and translation of target mRNA.Guidance RNA induces silencing complexes to regulate target gene expression. It plays an important role in cell physiological processes and is an important molecule regulating gene expression at the post-transcriptional level,at present,the relationship between miRNA and cardiovascular disease has become a research hot spot at home and abroad. In this paper,we reviewed the relationship between related miRNA and electrical and structural remodeling in Atrial fibrillation (Af) in cardiovascular disease

参考文献/References:

[1]Lee RC,Feinbaum RL,Ambros V,etal. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J].Cell,1993,75(5):843-854.

[2]Reinhart BJ,Slack FJ,Basson M,et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J].Nature,2000,403(6772):901-906.

[3]Varzideh F,Kansakar U,Donkor K,et al. Cardiac remodeling after myocardial infarction:functional contribution of microRNAs to inflammation and fibrosis[J]. Front Cardiovasc Med,2022,9:863238.

[4]沐嘉馨,林利. 微小RNA——心血管疾病的新兴要素[J]. 医学研究杂志,2020,49(8):9-13.

[5]Wojciechowska A,Braniewska A,Kozar-Kamińska K. MicroRNAin cardiovascular biology and disease[J]. Adv Clin Exp Med,2017,26(5):865-874.

[6]Hu F,Zheng L,Liu S,et al. Avoidance of vagal response during circumferential pulmonary vein isolation:effect of initiatingisolation from right anterior ganglionated plexi[J]. Circ Arrhythm Electrophysiol,2019,12(12):e007811.

[7]Qin M,Zeng C,Liu X. The cardiac autonomic nervous system:a target for modulation of atrial fibrillation[J]. Clin Cardiol ,2019,42(6):644-652.

[8]Ha?ssaguerre M,Ja?s P,Shah DC,et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins[J]. N Engl J Med,1998,339(10):659-666.

[9]Jalife J,Berenfeld O,Mansour M. Mother rotors and fibrillatory conduction:a mechanism of atrial fibrillation[J]. Cardiovasc Res ,2002,54(2):204-216.

[10]Mandapati R,Skanes A,Chen J,et al. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart[J]. Circulation,2000,101(2):194-199.

[11]Shi S,Tang Y,Zhao Q,et al. Prevalence and risk of atrial fibrillation in China:a national cross-sectional epidemiological study[J]. Lancet Reg Health West Pac,2022,23:100439.

[12]Zhou Z,Hu D. An epidemiological study on the prevalence of atrial fibrillation in the Chinese population of mainland China[J]. J Epidemiol,2008,18(5):209-216.

[13]Chugh SS,Havmoeller R,Narayanan K,et a1. Worldwide epidemiology of atrial fibrillation:a Global Burden of Disease 2010 Study[J]. Circulation,2014,129(8):837-847.

[14]Kirchhof P,Benussi S,Kotecha D,et a1. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS[J]. Eur Heart J,2016,37(38):2893-2962.

[15]张澍,杨艳敏,黄从新,等. 中国心房颤动患者卒中预防规范[J]. 中华心律失常学杂志,2015,19(3):162-173.

[16]Zhao Y,Samal E,Srivastava D. Serum response factor regulate samuscle-specif microRNA that targets Hand2 during cardiogenesis [J]. Nature,2005,436(7048):214-220.

[17]Girmatsion Z,Biliczki P,Bonauer A,et al. Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation[J]. Heart Rhythm,2009,6(12):1802-1809.

[18]Li YD,Hong YF,Yusufuaji Y,et al. Altered expression of hyperpolarization-activated cyclic nucleotide-gated channels and microRNA-1 and -133 in patients with age-associated atrial fibrillation[J]. Mol Med Rep,2015,12(3):3243-3248.

[19]Jia X,Zheng S,Xie X,et al. MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expresssion:an atrial tachypacing rabbit model [J]. PLoS One,2013,8(12):e85639.

[20]Paul A,Pai PG,Ariyannur PS,et al. Diagnostic accuracy of microRNA 208b level with respect to different types of atrial fibrillation[J]. Indian Heart J,2021,73(4):506-510.

[21]Ca?ón S,Caballero R,Herraiz-Martínez A,et al. miR-208b upregulation interferes with calcium handling in HL-1 atrial myocytes:implications in human chronic atrial fibrillation[J].J Mol Cell Cardiol,2016,99:162-173.

[22]Du J,Li Z,Wang X,et al. Long noncoding RNA TCONS-00106987 promotes atrial electrical remodelling during atrial fibrillation by sponging miR-26 to regulateKCNJ2[J]. J Cell Mol Med,2020,24(21):12777-12788.

[23]Luo X, Pan Z,Shan H, et al. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation.[J] J Clin Invest ,2013 123(5):1939-51.

[24]Lu Y,Zhang Y,Wang N,et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation[J]. Circulation,2010,122(23):2378-2387.

[25]王玺. 血浆在心房颤动中的表达水平及其临床意义[J]. 郑州大学硕士学位论文,2013,1-63.

[26]Biliczki P ,Boon RA,Girmatsion Z,et al. Age-related regulation and region-specific distribution of ion channel subunits promoting atrial fibrillation in human left and right atria[J]. Europace,2019,21(8):1261-1269.

[27]Li Z,Wang X,Wang W,et al. Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation:TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C[J]. J Mol Cell Cardiol,2017,108:73-85.

[28]Xiao S,Zhou Y,Liu A,et al. Uncovering potential novel biomarkers and immune infiltration characteristics in persistent atrial fibrillation using integrated bioinformatics analysis[J]. Math Biosci Eng,2021,18(4):4696-4712.

[29]Zhu Y,Feng Z,Cheng W,et a1. MicroRNA-34a mediates atrial fibrillation through regulation of Ankyrin-B expression[J]. Mol Med Rep,2018,17(6):8457-8465.

[30]Ling TY,Wang XL,Chai Q,et a1. Regulation of the SK3 channel by microRNA-499—Potential role in atrial fibrillation[J]. Heart Rhythm,2013,10(7):1001-1009.

[31]Ling TY,Wang XL,Chai Q,et a1. Regulation of cardiac CACNB2 by microRNA-499:potential role in atrial fibrillation[J]. BBA Clin,2017,7:78-84.

[32]Cordeiro JM,Marieb M,Pfeiffer R,et a1. Accelerated inactivation of the L-type calcium current due to a mutation in CACNB2b underlies Brugada syndrome[J]. J Mol Cell Cardiol,2009,46(5):695-703.

[33]冯桂荣,钟国强,蒋智渊,等. microRNA-155在慢性心房颤动心房3型小电导钙激活钾通道重构中的作用[J]. 临床心血管病杂志,2017,33(7):662-666.

[34]Wang J,Ye Q,Bai S,et a1. Inhibiting microRNA-155 attenuates atrial fibrillation by targeting CACNA1C[J]. J Mol Cell Cardiol,2021,155:58-65.

[35]王咏春,刘芳,张续腾,等. miR-21在心房颤动中的作用研究进展[J]. 医学综述,2021,27(18):3669-3773.

[36]朱瓦力,伍伟锋. 心房颤动患者心房组织中微小RNA-21和金属基质蛋白酶-2表达水平改变及意义[J]. 中华心律失常学杂志,2011,15(2):132-135.

[37]Chen H,Zhang F,Zhang YL,et a1. Relationship between circulating miRNA-21,atrial fibrosis,and atrial fibrillation in patients with atrial enlargement[J]. Ann Palliat Med,2021,10(12):12742-12749.

[38]吴双. MicroRNA-200a在心脏纤维化的调控机制及血浆大内皮素-1对心房颤动患者预后的影响[J]. 协和医学院,2019,1-107.

[39]施鹏. MicroRNA-200a调控心肌成纤维细胞增殖活化的机制研究[J]. 安徽医科大学硕士研究论文. 2017,1-59.

[40]何艳. MicroRNA-101在心房颤动中心房重构中的作用研究.广西医科大学硕士研究论文. 2017,1-71.

[41]Zhu J,Zhu N,Xu J. miR-101a-3p overexpression prevents acetylcholine-CaCl2-induced atrial fibrillation in rats via reduction of atrial tissue fibrosis,involving inhibition of EZH2[J]. J Mol Med Rep,2021,24(4):740.

[42]朱丹,杨良瑞,应佐华. MicroRNA-29a调控心房颤动模型大鼠心房肌细胞凋亡的机制研究[J]. 中国循证心血管医学杂志,2021,13(3):302-305.

[43]Lv X,Lu P,Hu Y,et a1. Overexpression of miR-29b-3p inhibits atrial remodeling in rats by targeting PDGF-B signaling pathway[J]. Oxid Med Cell Longev,2021,2021:3763529.

[44]Qiao G,Xia D,Cheng Z,et al. miR-132 in atrial fibrillation directly targets connective tissue growth factor[J]. Mol Med Rep,2017,16(4):4143-4150.

[45]Cheng WL,Kao YH,Chao TF,et al. MicroRNA-133 suppresses ZFHX3-dependent atrial remodelling and arrhythmi[J]. Acta Physiol(Oxf),2019,227(3):e13322.

[46]Li H,Li S,Yu B,et al. Expression of miR-133 and miR-30 in chronic atrial fibrillation in canines[J]. Mol Med Rep,2012,5(6):1457-1460.

[47]Shan H,Zhang Y,Lu Y,et al. Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines[J]. Cardiovasc Res,2009,83(3):465-472.

相似文献/References:

[1]贺鹏康,周菁.心房颤动治疗新技术——冷冻球囊消融[J].心血管病学进展,2016,(1):1.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.001]
 HE Pengkang,ZHOU Jing.Cryoballoon Ablation, A Novel Technology for Atrial Fibrillation Treatment[J].Advances in Cardiovascular Diseases,2016,(4):1.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.001]
[2]都明辉,施海峰*,佟佳宾,等.心房颤动消融相关性无症状性脑缺血[J].心血管病学进展,2016,(1):3.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.002]
 DU Minghui,SHI Haifeng*,TONG Jiabin,et al.Silent Cerebral Ischemia Related to Atrial Fibrillation Ablation[J].Advances in Cardiovascular Diseases,2016,(4):3.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.002]
[3]郑环杰,综述,肖骅,等.心房颤动抗栓治疗研究进展[J].心血管病学进展,2016,(2):142.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.012]
 ZHENG Huanjie,XIAO Hua.Progress of Antithrombotic Therapy in Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(4):142.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.012]
[4]张清,综述,罗素新,等.新型Xa 因子抑制剂———依度沙班在心房颤动患者抗凝治疗中的研究进展[J].心血管病学进展,2016,(2):151.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.014]
 ZHANG Qing,LUO Suxin,TANG Jiong.Novel Factor Xa Inhibitors—Edoxaban in Prevention of Stroke in Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(4):151.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.014]
[5]胡红玲,综述,罗素新,等.预防非瓣膜性心房颤动性脑卒中的治疗新进展[J].心血管病学进展,2016,(3):250.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.009]
 HU Hongling,LUO Suxin.New Progress in the Treatment for Cerebral Apoplexy of Nonvalvular Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(4):250.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.009]
[6]王超,杨国澍,综述,等.关附甲素治疗心房颤动的研究进展[J].心血管病学进展,2016,(3):254.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.010]
 WANG Chao,YANG Guoshu,CAI Lin,et al.Research Progress of the Treatment of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(4):254.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.010]
[7]徐小东,综述,杨东辉,等.决奈达隆治疗心房颤动的现状及展望[J].心血管病学进展,2016,(4):368.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.011]
 XU Xiaodong,YANG Donghui.Status and Prospect of Dronedarone in Treating Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(4):368.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.011]
[8]张莎,储国俊,吴弘.经导管左心耳封堵术的临床应用进展[J].心血管病学进展,2015,(5):547.[doi:10.3969/j.issn.1004-3934.2015.05.006]
 ZHANG Sha,CHU Guojun,WU Hong.Clinial Application Advances in Left Atrial Appendage Closure[J].Advances in Cardiovascular Diseases,2015,(4):547.[doi:10.3969/j.issn.1004-3934.2015.05.006]
[9]汪俊,杨浩.心房颤动射频消融的术式演变[J].心血管病学进展,2015,(5):574.[doi:10.3969/j.issn.1004-3934.2015.05.013]
 WANG Jun,YANG Hao.Evolution of Radiofrequency Ablation of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2015,(4):574.[doi:10.3969/j.issn.1004-3934.2015.05.013]
[10]赵璐,苏立.心房颤动与离子通道重构研究进展[J].心血管病学进展,2015,(5):580.[doi:10.3969/j.issn.1004-3934.2015.05.014]
 ZHAO Lu,SU Li.Research Progress of Atrial Fibrillation and Ion Channel Remodeling[J].Advances in Cardiovascular Diseases,2015,(4):580.[doi:10.3969/j.issn.1004-3934.2015.05.014]

更新日期/Last Update: 2023-05-17