[1]王卫卫 于子凯.糖酵解调控巨噬细胞极化及其在动脉粥样硬化病理过程中的作用[J].心血管病学进展,2022,(4):318-321.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.008]
 WANG Weiwei,YU Zikai.Glycolytic Modulation of Macrophage Polarization and Its Role in the Pathological Process of Atherosclerosis[J].Advances in Cardiovascular Diseases,2022,(4):318-321.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.008]
点击复制

糖酵解调控巨噬细胞极化及其在动脉粥样硬化病理过程中的作用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年4期
页码:
318-321
栏目:
综述
出版日期:
2022-04-25

文章信息/Info

Title:
Glycolytic Modulation of Macrophage Polarization and Its Role in the Pathological Process of Atherosclerosis
作者:
王卫卫1 于子凯 2
(1.中国人民解放军总医院第八医学中心中医科,北京100091;2.国家中医心血管病临床医学研究中心 中国中医科学院西苑医院,北京100091)
Author(s):
WANG Weiwei1YU Zikai2
(1.Traditional Chinese Medicine Department,The 8th Medical Center of Chinese PLA General Hospital,Beijing 100091,China; 2. National Clinical Research Center for Chinese Medicine Cardiology,Xiyuan Hospital,China Academy of Chinese Medical Sciences,Beijing 100091,China)
关键词:
动脉粥样硬化巨噬细胞极化糖酵解免疫代谢
Keywords:
AtherosclerosisMacrophage polarizationGlycolysisImmune metabolism
DOI:
10.16806/j.cnki.issn.1004-3934.2022.04.008
摘要:
动脉粥样硬化(AS)是动脉粥样硬化性心血管疾病的主要诱发因素,巨噬细胞极化在AS炎症发生发展过程中扮演着重要角色。近年来研究发现,代谢途径的改变是诱发巨噬细胞极化的关键环节,其中糖酵解是与AS关系最密切的免疫代谢途径。基于此,现从巨噬细胞免疫代谢途径的可塑性入手,对糖酵解调控巨噬细胞极化在AS病理进程中扮演的角色,以及调控上述途径的缺氧诱导因子-1α /磷酸果糖激酶-2/果糖-2,6-二磷酸酶3信号通路进行综述,以期为未来AS防治研究提供新方向。
Abstract:
Atherosclerosis(AS) is the main inducing factor of atherosclerotic cardiovascular disease. Macrophage polarization plays an important role in the occurrence and development of as inflammation. Recently,it has been found that the change of metabolic pathway is the key link to induce macrophage polarization,and glycolysis is the immune metabolic pathway most closely related to AS. Therefore,starting with the plasticity of macrophage immune metabolic pathway,this paper discusses the role of glycolysis in regulating macrophage polarization in the pathological process of AS and HIF-1α/ PFKFB3 signaling pathway. This is reviewed to provide a new direction for the prevention and treatment of AS in the future.

参考文献/References:

[1].GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global burden of cardiovascular diseases and risk factors,1990–2019:update from the GBD 2019 study[J]. J Am Coll Cardiol,2020,76(25):2982-3021.
[2].中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2019概要[J]. 中国循环杂志,2020,35(9):833-854.
[3].Libby P,Buring JE,Badimon L,et al. Atherosclerosis[J]. Nat Rev Dis Primers,2019,5(1):56.
[4].B?ck M,Yurdagul A Jr,Tabas I,et al. Inflammation and its resolution in atherosclerosis:mediators and therapeutic opportunities[J]. Nat Rev Cardiol,2019,16(7):389-406.
[5].Ridker PM,Everett BM,Thuren T,et al. Anti-inflammatory therapy with canakinumab for atherosclerotic disease[J]. N Engl J Med,2017,377(12):1119-1131.
[6].Ridker PM,Everett BM,Pradhan A,et al. Low-dose methotrexate for the prevention of atherosclerotic events[J]. N Engl J Med,2019,380(8):752-762.
[7].Kuznetsova T,Prange KHM,Glass CK,et al. Transcriptional and epigenetic regulation of macrophages in Atherosclerosis[J]. Nat Rev Cardiol,2020,17(4):216-228.
[8].Mouton AJ,Li X,Hall ME,et al. Obesity,hypertension,and cardiac dysfunction:novel roles of immunometabolism in macrophage activation and inflammation[J]. Circ Res,2020,126(6):789-806.
[9].Murray PJ,Rathmell J,Pearce E. SnapShot:immunometabolism[J]. Cell Metab,2015,22(1):190-190.e1.
[10].Ketelhuth DFJ,Lutgens E,B?ck M,et al. Immunometabolism and atherosclerosis:perspectives and clinical significance:a position paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology[J]. Cardiovasc Res,2019,115(9):1385-1392.
[11].Folco EJ,Sheikine Y,Rocha VZ,et al. Hypoxia but not inflammation augments glucose uptake in human macrophages :implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-D-glucose positron emission tomography[J]. J Am Coll Cardiol 2011,58(6):603-614.
[12].Joseph P,Tawakol A. Imaging atherosclerosis with positron emission tomography[J]. Eur Heart J,2016,37(39):2974-2980.
[13].Tomas L,Edsfeldt A,Mollet IG,et al. Altered metabolism distinguishes high-risk from stable carotid atherosclerotic plaques[J]. Eur Heart J,2018,39(24):2301-2310.
[14].O’Neill LA,Kishton RJ,Rathmell J. A guide to immunometabolism for immunologists[J]. Nat Rev Immunol,2016,16(9):553-565.
[15].Vander Heiden MG,Cantley LC,Thompson CB. Understanding the Warburg effect:the metabolic requirements of cell proliferation[J]. Science,2009,324(5930):1029-1033.
[16].Sarrazy V,Viaud M,Westerterp M,et al. Disruption of Glut1 in hematopoietic stem cells prevents myelopoiesis and enhanced glucose flux in atheromatous plaques of ApoE(-/-) mice[J]. Circ Res,2016,118(7):1062-1077.
[17].Matsui R,Xu S,Maitland KA,et al. Glucose-6-phosphate dehydrogenase deficiency decreases vascular superoxide and atherosclerotic lesions in apolipoprotein E(-/-) mice[J]. Arterioscler Thromb Vasc Biol,2006,26(4):910-916.
[18].Groh L,Keating ST,Joosten LAB,et al. Monocyte and macrophage immunometabolism in atherosclerosis[J]. Semin Immunopathol,2018,40(2):203-214.
[19].Libby P,Loscalzo J,Ridker PM,et al. Inflammation,immunity,and infection in atherothrombosis:JACC review topic of the week[J]. J Am Coll Cardiol,2018,72(17):2071-2081.
[20].Moore KJ,Sheedy FJ,Fisher EA. Macrophages in atherosclerosis:a dynamic balance[J]. Nat Rev Immunol,2013,13(10):709-721.
[21].Murray PJ. Macrophage polarization[J]. Annu Rev Physiol,2017,79:541-566.
[22].Murray PJ,Wynn TA. Protective and pathogenic functions of macrophage subsets[J]. Nat Rev Immunol,2011,11(11):723-737.
[23].Chinetti-Gbaguidi G,Colin S,Staels B. Macrophage subsets in atherosclerosis[J]. Nat Rev Cardiol,2015,12(1):10-17.
[24].Locati M,Curtale G,Mantovani A. Diversity,mechanisms,and significance of macrophage plasticity[J]. Annu Rev Pathol,2020,15:123-147.
[25].Baardman J,Verberk SGS,van der Velden S,et al. Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques[J]. Nat Commun,2020,11(1):6296.
[26].Boutens L,Hooiveld GJ,Dhingra S,et al. Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses[J]. Diabetologia,2018,61(4):942-953.
[27].Freemerman AJ,Zhao L,Pingili AK,et al. Myeloid Slc2a1-deficient murine model revealed macrophage activation and metabolic phenotype are fueled by GLUT1[J]. J Immunol,2019,202(4):1265-1286.
[28].Tan Z,Xie N,Cui H,et al. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism[J]. J Immunol,2015,194(12):6082-6089.
[29].Koelwyn GJ,Corr EM,Erbay E,et al. Regulation of macrophage immunometabolism in atherosclerosis[J]. Nat Immunol,2018,9(6):526-537.
[30].Tabas I,Bornfeldt KE. Intracellular and intercellular aspects of macrophage immunometabolism in atherosclerosis[J]. Circ Res,2020,126(9):1209-1227.
[31].Yi M,Ban Y,Tan Y,et al. 6-Phosphofructo-2-kinase/ fructose-2,6-biphosphatase 3 and 4:a pair of valves for fine-tuning of glucose metabolism in human cancer [J]. Mol Metab,2019,20:1-13.
[32].Yang Z,Goronzy JJ,Weyand CM. The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy[J]. Autophagy,2014,10(2):382-383.
[33].Schnitzler JG, Hoogeveen RM, Ali L,et al. Atherogenic lipoprotein(a) increases vascular glycolysis,thereby facilitating inflammation and leukocyte extravasation[J]. Circ Res,2020,126(10):1346-1359.
[34].Rodríguez-Prados JC,Través PG,Cuenca J,et al. Substrate fate in activated macrophages:a comparison between innate,classic,and alternative activation[J]. J Immunol,2010,185(1):605-614.
[35].Tawakol A,Singh P,Mojena M,et al. HIF-1α and PFKFB3 mediate a tight relationship between proinflammatory activation and anerobic metabolism in atherosclerotic macrophages[J]. Arterioscler Thromb Vasc Biol,2015,35(6):1463-1471.
[36].Castegna A,Gissi R,Menga A,et al. Pharmacological targets of metabolism in disease:opportunities from macrophages[J]. Pharmacol Ther,2020,210:107521.
[37].Ouimet M,Ediriweera HN,Gundra UM,et al. Micro RNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis[J]. J Clin Invest,2015,125(12):4334-4348.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(4):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(4):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(4):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(4):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(4):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(4):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(4):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(4):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(4):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(4):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
[11]罗之晟 王超 刘家汝 关秀茹.Mhem/M(Hb)型巨噬细胞极化在动脉粥样硬化病变中的作用[J].心血管病学进展,2021,(12):1120.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.016]
 LUO Zhisheng,WANG Chao,LIU Jiaru,et al.Role of Mhem/M(Hb) Macrophage Polarization in Atherosclerotic Lesions[J].Advances in Cardiovascular Diseases,2021,(4):1120.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.016]

更新日期/Last Update: 2022-05-13