参考文献/References:
[1].GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global burden of cardiovascular diseases and risk factors,1990–2019:update from the GBD 2019 study[J]. J Am Coll Cardiol,2020,76(25):2982-3021.
[2].中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2019概要[J]. 中国循环杂志,2020,35(9):833-854.
[3].Libby P,Buring JE,Badimon L,et al. Atherosclerosis[J]. Nat Rev Dis Primers,2019,5(1):56.
[4].B?ck M,Yurdagul A Jr,Tabas I,et al. Inflammation and its resolution in atherosclerosis:mediators and therapeutic opportunities[J]. Nat Rev Cardiol,2019,16(7):389-406.
[5].Ridker PM,Everett BM,Thuren T,et al. Anti-inflammatory therapy with canakinumab for atherosclerotic disease[J]. N Engl J Med,2017,377(12):1119-1131.
[6].Ridker PM,Everett BM,Pradhan A,et al. Low-dose methotrexate for the prevention of atherosclerotic events[J]. N Engl J Med,2019,380(8):752-762.
[7].Kuznetsova T,Prange KHM,Glass CK,et al. Transcriptional and epigenetic regulation of macrophages in Atherosclerosis[J]. Nat Rev Cardiol,2020,17(4):216-228.
[8].Mouton AJ,Li X,Hall ME,et al. Obesity,hypertension,and cardiac dysfunction:novel roles of immunometabolism in macrophage activation and inflammation[J]. Circ Res,2020,126(6):789-806.
[9].Murray PJ,Rathmell J,Pearce E. SnapShot:immunometabolism[J]. Cell Metab,2015,22(1):190-190.e1.
[10].Ketelhuth DFJ,Lutgens E,B?ck M,et al. Immunometabolism and atherosclerosis:perspectives and clinical significance:a position paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology[J]. Cardiovasc Res,2019,115(9):1385-1392.
[11].Folco EJ,Sheikine Y,Rocha VZ,et al. Hypoxia but not inflammation augments glucose uptake in human macrophages :implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-D-glucose positron emission tomography[J]. J Am Coll Cardiol 2011,58(6):603-614.
[12].Joseph P,Tawakol A. Imaging atherosclerosis with positron emission tomography[J]. Eur Heart J,2016,37(39):2974-2980.
[13].Tomas L,Edsfeldt A,Mollet IG,et al. Altered metabolism distinguishes high-risk from stable carotid atherosclerotic plaques[J]. Eur Heart J,2018,39(24):2301-2310.
[14].O’Neill LA,Kishton RJ,Rathmell J. A guide to immunometabolism for immunologists[J]. Nat Rev Immunol,2016,16(9):553-565.
[15].Vander Heiden MG,Cantley LC,Thompson CB. Understanding the Warburg effect:the metabolic requirements of cell proliferation[J]. Science,2009,324(5930):1029-1033.
[16].Sarrazy V,Viaud M,Westerterp M,et al. Disruption of Glut1 in hematopoietic stem cells prevents myelopoiesis and enhanced glucose flux in atheromatous plaques of ApoE(-/-) mice[J]. Circ Res,2016,118(7):1062-1077.
[17].Matsui R,Xu S,Maitland KA,et al. Glucose-6-phosphate dehydrogenase deficiency decreases vascular superoxide and atherosclerotic lesions in apolipoprotein E(-/-) mice[J]. Arterioscler Thromb Vasc Biol,2006,26(4):910-916.
[18].Groh L,Keating ST,Joosten LAB,et al. Monocyte and macrophage immunometabolism in atherosclerosis[J]. Semin Immunopathol,2018,40(2):203-214.
[19].Libby P,Loscalzo J,Ridker PM,et al. Inflammation,immunity,and infection in atherothrombosis:JACC review topic of the week[J]. J Am Coll Cardiol,2018,72(17):2071-2081.
[20].Moore KJ,Sheedy FJ,Fisher EA. Macrophages in atherosclerosis:a dynamic balance[J]. Nat Rev Immunol,2013,13(10):709-721.
[21].Murray PJ. Macrophage polarization[J]. Annu Rev Physiol,2017,79:541-566.
[22].Murray PJ,Wynn TA. Protective and pathogenic functions of macrophage subsets[J]. Nat Rev Immunol,2011,11(11):723-737.
[23].Chinetti-Gbaguidi G,Colin S,Staels B. Macrophage subsets in atherosclerosis[J]. Nat Rev Cardiol,2015,12(1):10-17.
[24].Locati M,Curtale G,Mantovani A. Diversity,mechanisms,and significance of macrophage plasticity[J]. Annu Rev Pathol,2020,15:123-147.
[25].Baardman J,Verberk SGS,van der Velden S,et al. Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques[J]. Nat Commun,2020,11(1):6296.
[26].Boutens L,Hooiveld GJ,Dhingra S,et al. Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses[J]. Diabetologia,2018,61(4):942-953.
[27].Freemerman AJ,Zhao L,Pingili AK,et al. Myeloid Slc2a1-deficient murine model revealed macrophage activation and metabolic phenotype are fueled by GLUT1[J]. J Immunol,2019,202(4):1265-1286.
[28].Tan Z,Xie N,Cui H,et al. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism[J]. J Immunol,2015,194(12):6082-6089.
[29].Koelwyn GJ,Corr EM,Erbay E,et al. Regulation of macrophage immunometabolism in atherosclerosis[J]. Nat Immunol,2018,9(6):526-537.
[30].Tabas I,Bornfeldt KE. Intracellular and intercellular aspects of macrophage immunometabolism in atherosclerosis[J]. Circ Res,2020,126(9):1209-1227.
[31].Yi M,Ban Y,Tan Y,et al. 6-Phosphofructo-2-kinase/ fructose-2,6-biphosphatase 3 and 4:a pair of valves for fine-tuning of glucose metabolism in human cancer [J]. Mol Metab,2019,20:1-13.
[32].Yang Z,Goronzy JJ,Weyand CM. The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy[J]. Autophagy,2014,10(2):382-383.
[33].Schnitzler JG, Hoogeveen RM, Ali L,et al. Atherogenic lipoprotein(a) increases vascular glycolysis,thereby facilitating inflammation and leukocyte extravasation[J]. Circ Res,2020,126(10):1346-1359.
[34].Rodríguez-Prados JC,Través PG,Cuenca J,et al. Substrate fate in activated macrophages:a comparison between innate,classic,and alternative activation[J]. J Immunol,2010,185(1):605-614.
[35].Tawakol A,Singh P,Mojena M,et al. HIF-1α and PFKFB3 mediate a tight relationship between proinflammatory activation and anerobic metabolism in atherosclerotic macrophages[J]. Arterioscler Thromb Vasc Biol,2015,35(6):1463-1471.
[36].Castegna A,Gissi R,Menga A,et al. Pharmacological targets of metabolism in disease:opportunities from macrophages[J]. Pharmacol Ther,2020,210:107521.
[37].Ouimet M,Ediriweera HN,Gundra UM,et al. Micro RNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis[J]. J Clin Invest,2015,125(12):4334-4348.
相似文献/References:
[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(4):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(4):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(4):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(4):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(4):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(4):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(4):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(4):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(4):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(4):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
[11]罗之晟 王超 刘家汝 关秀茹.Mhem/M(Hb)型巨噬细胞极化在动脉粥样硬化病变中的作用[J].心血管病学进展,2021,(12):1120.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.016]
LUO Zhisheng,WANG Chao,LIU Jiaru,et al.Role of Mhem/M(Hb) Macrophage Polarization in Atherosclerotic Lesions[J].Advances in Cardiovascular Diseases,2021,(4):1120.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.016]