[1]阎文江 陈良 杨晶晶.超声分子成像技术在靶向诊疗动脉粥样硬化中的进展[J].心血管病学进展,2022,(4):309-312.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.006]
 YAN Wenjiang,CHEN Liang,YANG Jingjing.Molecular Ultrasound Imaging Technology for Targeting Diagnosis?nd Treatment of Atherosclerosis?/html>[J].Advances in Cardiovascular Diseases,2022,(4):309-312.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.006]
点击复制

超声分子成像技术在靶向诊疗动脉粥样硬化中的进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年4期
页码:
309-312
栏目:
综述
出版日期:
2022-04-25

文章信息/Info

Title:
Molecular Ultrasound Imaging Technology for Targeting Diagnosis?nd Treatment of Atherosclerosis?/html>
作者:
阎文江 陈良 杨晶晶
(教育部、卫健委、中国医学科学院心血管重构与功能研究重点实验室 省部共建心血管转化医学重点实验室 山东大学齐鲁医院,山东 济南 250012)
Author(s):
YAN Wenjiang CHEN Liang YANG Jingjing
?Key Laboratory of Cardiovascular Remodeling and Function Research,Chinese Ministry of Education,Chinese Ministry of Health and Chinese Academy of Medical Sciences,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine,Qilu Hospital of Shandong University, Jinan 250012, Shandong, China )
关键词:
动脉粥样硬化靶向超声微泡内皮细胞血管新生
Keywords:
Atherosclerosis Targeted ultrasound microbubbles Endothelium Angiogenesis
DOI:
10.16806/j.cnki.issn.1004-3934.2022.04.006
摘要:
动脉粥样硬化是一种无症状的慢性炎症性疾病,最终导致斑块的形成。当斑块不稳定糜烂破裂触发血栓形成,阻塞血管,导致急性心肌梗死和脑卒中。目前,动脉粥样硬化的预防主要通过对危险因素(吸烟、高血压、高血糖和高血脂)的监测和控制。在严格控制危险因素以及强化药物治疗的情况下,剩余风险对临床仍是一个巨大的挑战。更早期检测预防动脉粥样硬化病变,阻止斑块继续发展破裂势在必行。近年来靶向超声微泡发展迅速,超声微泡靶向成像技术可在分子和细胞水平上早期识别和诊断动脉粥样硬化斑块的特征和成分组成,为动脉粥样硬化疾病的治疗提供了更多的机会。
Abstract:
Atherosclerosis is an asymptomatic chronic inflammatory disease, which eventually leads to the formation of plaque. When an unstable plaque suddenly ruptures, it triggers the formation of thrombi which leading to acute?myocardial infarction and stroke by blocking the vessels. Currently, the prevention of atherosclerosis is mainly through monitoring and control of the risk factors (smoking, hypertension, hyperglycemia and hyperlipidemia). Residual risk remains a huge clinical challenge in the context of strict control of risk factors and intensive drug therapy. Therefore, early detection and prevention of atherosclerotic lesions and preventing the continued development of plaque rupture are imperative. In the past few years, the microbubbles functionalized with different targeting ligands to assess different stages of atherosclerosis has been successfully introduced in the preclinical applications. This technology has the potential to substantially improve the precision in the diagnosis and treatment of atherosclerosis.

参考文献/References:

[1] 杨伯文,韩红. 超声造影在腹主动脉瘤腔内修复术后内漏诊断中的应用进展[J]. 中华超声影像学杂志,2019,28(4):365-368.

[2] Sidhu PS,Cantisani V,Dietrich CF,et al. The EFSUMB Guidelines and Recommendations for the Clinical Practice of Contrast-Enhanced Ultrasound (CEUS) in Non-Hepatic Applications: Update 2017 (Short Version)[J]. Ultraschall Med,2018,39(2):154-180.

[3] Saha SA,Gourineni V,Feinstein SB. The use of contrast-enhanced ultrasonography for imaging of carotid atherosclerotic plaques: current evidence,future directions[J]. Neuroimaging Clin N Am,2016,26(1):81-96.

[4] Rix A,Curaj A,Liehn E,et al. Ultrasound microbubbles for diagnosis and treatment of cardiovascular diseases[J]. Semin Thromb Hemost,2020,46(5):545-552.

[5] 陈银花,陈勇,马勇,等. 二维纵向应变对室壁运动正常患者冠状动脉左主干和三支病变的预测价值[J]. 中国循环杂志,2019,34 (1):55-60.

[6] Porter TR,Mulvagh SL,Abdelmoneim SS,et al. Clinical applications of ultrasonic enhancing agents in echocardiography: 2018 American Society of Echocardiography Guidelines Update[J]. J Am Soc Echocardiogr,2018,31(3):241-274.

[7] Curaj A,Wu Z,Rix A,et al. Molecular ultrasound imaging of junctional adhesion molecule a depicts acute alterations in blood flow and early endothelial dysregulation[J]. Arterioscler Thromb Vasc Biol,2018,38(1):40-48.

[8] Kaufmann BA,Sanders JM,Davis C,et al. Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1[J]. Circulation,2007,116(3):276-284.

[9] Kaufmann BA,Carr CL,Belcik JT,et al. Molecular imaging of the initial inflammatory response in atherosclerosis: implications for early detection of disease[J]. Arterioscler Thromb Vasc Biol,2010,30(1):54-59.

[10] Mccarty OJ,Conley RB,Shentu W,et al. Molecular imaging of activated von Willebrand factor to detect high-risk atherosclerotic phenotype[J]. JACC Cardiovasc Imaging,2010,3(9):947-955.

[11] Moccetti F,Weinkauf CC,Davidson BP,et al. Ultrasound molecular imaging of atherosclerosis using small-peptide targeting ligands against endothelial markers of inflammation and oxidative stress[J]. Ultrasound Med Biol,2018,44(6):1155-1563.

[12] Yan F,Sun Y,Mao Y,et al. Ultrasound molecular imaging of atherosclerosis for early diagnosis and therapeutic evaluation through leucocyte-like multiple targeted microbubbles[J]. Theranostics,2018,8(7):1879-1891.

[13] Guo S,Shen S,Wang J,et al. Detection of high-risk atherosclerotic plaques with ultrasound molecular imaging of glycoprotein Ⅱb/Ⅲa receptor on activated platelets[J]. Theranostics,2015,5(4):418-430.

[14] Liu H,Wang X,Tan KB,et al. Molecular imaging of vulnerable plaques in rabbits using contrast-enhanced ultrasound targeting to vascular endothelial growth factor receptor-2[J]. J Clin Ultrasound,2011,39(2):83-90.

[15] Daeichin V,Kooiman K,Skachkov I,et al. Quantification of endothelial alphavbeta3 expression with high-frequency ultrasound and targeted microbubbles: in vitro and in vivo studies[J]. Ultrasound Med Biol,2016,42(9):2283-2293.

[16] Lu Y,Wei J,Shao Q,et al. Assessment of atherosclerotic plaques in the rabbit abdominal aorta with interleukin-8 monoclonal antibody-targeted ultrasound microbubbles[J]. Mol Biol Rep,2013,40(4):3083-3092.

[17] Qian L,Thapa B,Hong J,et al. The present and future role of ultrasound targeted microbubble destruction in preclinical studies of cardiac gene therapy[J]. J Thorac Dis,2018,10(2):1099-1111.

[18] He Y,Zhang B,Chen Y,et al. Image-guided hydrogen gas delivery for protection from myocardial ischemia-reperfusion injury via microbubbles[J]. ACS Appl Mater Interfaces,2017,9(25):21190-21199.

[19] Yan P,Chen KJ,Wu J,et al. The use of MMP2 antibody-conjugated cationic microbubble to target the ischemic myocardium,enhance Timp3 gene transfection and improve cardiac function[J]. Biomaterials,2014,35(3):1063-1073.

[20] Wang X,Gkanatsas Y,Palasubramaniam J,et al. Thrombus-targeted theranostic microbubbles: a new technology towards concurrent rapid ultrasound diagnosis and bleeding-free fibrinolytic treatment of thrombos is[J]. Theranostics,2016,6(5):726-738.

[21] 黄村榕,刘炜达,杨进刚,等. 中国ST段抬高型心肌梗死患者初始他汀类药物用药强度与远期预后的相关性研究[J]. 中国循环杂志,2020,35(6):560-565.

[22] Wang X,Hagemeyer CE,Hohmann JD,et al. Novel single-chain antibody-targeted microbubbles for molecular ultrasound imaging of thrombosis: validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice[J]. Circulation,2012,125(25):3117-3126.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(4):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(4):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(4):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(4):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(4):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(4):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(4):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(4):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(4):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(4):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]

更新日期/Last Update: 2022-05-13