[1]李轶男 裴汉军.氧化三甲胺促进动脉粥样硬化的研究进展[J].心血管病学进展,2022,(6):542.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.016]
 LI Yinan,PEI Hanjun.Trimethylamine N-Oxide Promoting Atherosclerosis[J].Advances in Cardiovascular Diseases,2022,(6):542.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.016]
点击复制

氧化三甲胺促进动脉粥样硬化的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年6期
页码:
542
栏目:
综述
出版日期:
2022-06-25

文章信息/Info

Title:
Trimethylamine N-Oxide Promoting Atherosclerosis
作者:
李轶男 裴汉军
(内蒙古科技大学包头医学院第一附属医院心内科,内蒙古 包头 014010 )
Author(s):
LI Yinan PEI Hanjun
(Department of Cardiology,The First Affiliated Hospital of Baotou Medical College,Inner Mongolia University of Science and Technology,Baotou 014010,Inner Mongolia,China)
关键词:
氧化三甲胺动脉粥样硬化治疗
Keywords:
Trimethylamine N-oxide Atherosclerosis Treatment
DOI:
10.16806/j.cnki.issn.1004-3934.2022.06.016
摘要:
动脉粥样硬化(AS)是导致人群高死亡率的心血管疾病的主要原因,除了有高血糖、高血脂、吸烟和年龄等常见危险因素外,近年来氧化三甲胺(TMAO)引起了人们的注意,被认为是促AS发展的重要因素。现主要从TMAO促AS的可能机制、TMAO的临床应用价值及干预TMAO产生的治疗方案展开综述,旨在为防治AS及评估冠心病患者临床预后提供新思路。
Abstract:
Atherosclerosis is the main cause of cardiovascular disease leading to high mortality in population. In addition to common risk factors such as hyperglycemia,hyperlipidemia,smoking and age,TMAO has attracted people’s attention in recent years and is considered to be an important factor promoting the development of atherosclerosis. This review focuses on the possible mechanism of TMAO promoting atherosclerosis,the clinical application value of TMAO and the treatment plan of TMAO intervention,aiming to provide new ideas for the prevention and treatment of atherosclerosis and the evaluation of clinical prognosis of patients with coronary heart disease.

参考文献/References:

[1].Li T,Chen Y,Gua C,et al. Elevated circulating trimethylamine N-oxide levels contribute to endothelial dysfunction in aged rats through vascular inflammation and oxidative stress[J]. Front Physiol,2017,8:350.
[2].Collot-Teixeira S,Martin J,McDermott-Roe C,et al. CD36 and macrophages in atherosclerosis[J]. Cardiovasc Res,2007,75(3):468-477.
[3].Yu XH,Fu YC,Zhang DW,et al. Foam cells in atherosclerosis[J]. Clin Chim Acta,2013,424:245-252.
[4].Boullier A,Bird DA,Chang MK,et al. Scavenger receptors,oxidized LDL,and atherosclerosis[J]. Ann N Y Acad Sci,2001,947:214-222.
[5].Mohammadi A,Najar AG,Yaghoobi MM,et al. Trimethylamine-N-oxide treatment induces changes in the ATP-binding cassette transporter A1 and scavenger receptor A1 in murine macrophage J774A.1 cells[J]. Inflammation,2016,39(1):393-404.
[6].Zhu Y,Li Q,Jiang H. Gut microbiota in atherosclerosis:focus on trimethylamine N-oxide[J]. APMIS,2020,128(5):353-366.
[7].Zhu W,Wang Z,Tang WHW,et al. Gut microbe-generated trimethylamine N-oxide from dietary choline is prothrombotic in subjects[J]. Circulation,2017,135(17):1671-1673.
[8].Zhu W,Gregory JC,Org E,et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk[J]. Cell,2016,165(1):111-124.
[9].Huang PH,Chen JW,Lin SJ. Effects of cardiovascular risk factors on endothelial progenitor cell[J]. Acta Cardiol Sin,2014,30(5):375-381.
[10].Vasa M,Fichtlscherer S,Aicher A,et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease[J]. Circ Res,2001,89(1):E1-E7.
[11].Chou RH,Chen CY,Chen IC,et al. Trimethylamine N-oxide,circulating endothelial progenitor cells,and endothelial function in patients with stable angina[J]. Sci Rep,2019,9(1):4249.
[12].Deanfield JE,Halcox JP,Rabelink TJ. Endothelial function and dysfunction:testing and clinical relevance[J]. Circulation,2007,115(10):1285-1295.
[13].Dokusova OK. Conversion of cholesterol into bile acids and regulation of this process[J]. Vopr Med Khim,1975,21(5):461-469.
[14].Lefebvre P,Cariou B,Lien F,et al. Role of bile acids and bile acid receptors in metabolic regulation[J]. Physiol Rev,2009,89(1):147-191.
[15].Sinal CJ,Tohkin M,Miyata M,et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis[J]. Cell,2000,102(6):731-744.
[16].Ding L,Chang M,Guo Y,et al. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism[J]. Lipids Health Dis,2018,17(1):286.
[17].Seldin MM,Meng Y,Qi H,et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB[J]. J Am Heart Assoc,2016,5(2):e002767.
[18].Chen ML,Yi L,Zhang Y,et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota[J]. mBio,2016,7(2):e02210- e02215.
[19].Sun X,Jiao X,Ma Y,et al. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome[J]. Biochem Biophys Res Commun,2016,481(1-2):63-70.
[20].Janoudi A,Shamoun FE,Kalavakunta JK,et al. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque[J]. Eur Heart J,2016,37(25):1959-1967.
[21].Cheng X,Qiu X,Liu Y,et al. Trimethylamine N-oxide promotes tissue factor expression and activity in vascular endothelial cells:a new link between trimethylamine N-oxide and atherosclerotic thrombosis[J]. Thromb Res,2019,177:110-116.
[22].Waleed KB,Tse G,Lu YK,et al. Trimethylamine N-oxide is associated with coronary atherosclerotic burden in non-ST-segment myocardial infarction patients:SZ-NSTEMI prospective cohort study[J]. Rev Cardiovasc Med,2021,22(1):231-238.
[23].Senthong V,Li XS,Hudec T,et al. Plasma trimethylamine N-oxide,a gut microbe-generated phosphatidylcholine metabolite,is associated with atherosclerotic burden[J]. J Am Coll Cardiol,2016,67(22):2620-2628.
[24].Sheng Z,Tan Y,Liu C,et al. Relation of circulating trimethylamine N-oxide with coronary atherosclerotic burden in patients with ST-segment elevation myocardial infarction[J]. Am J Cardiol,2019,123(6):894-898.
[25].Li J,Sheng Z,Tan Y,et al. Association of plasma trimethylamine N-oxide level with healed culprit plaques examined by optical coherence tomography in patients with ST-segment elevation myocardial infarction[J]. Nutr Metab Cardiovasc Dis,2021,31(1):145-152.
[26].Liu X,Xie Z,Sun M,et al. Plasma trimethylamine N-oxide is associated with vulnerable plaque characteristics in CAD patients as assessed by optical coherence tomography[J]. Int J Cardiol,2018,265:18-23.
[27].M?ller B,Hippe H,Gottschalk G. Degradation of various amine compounds by mesophilic clostridia[J]. Arch Microbiol,1986,145(1):85-90.
[28].Zhu Y,Jameson E,Crosatti M,et al. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota[J]. Proc Natl Acad Sci U S A,2014,111(11):4268-4273.
[29].Qiu L,Yang D,Tao X,et al. Enterobacter aerogenes ZDY01 attenuates choline-induced trimethylamine N-oxide levels by remodeling gut microbiota in mice[J]. J Microbiol Biotechnol,2017,27(8):1491-1499.
[30].Wang Z,Roberts AB,Buffa JA,et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis[J]. Cell,2015,163(7):1585-1595.
[31].Ramezani A,Nolin TD,Barrows IR,et al. Gut Colonization with methanogenic archaea lowers plasma trimethylamine N-oxide concentrations in apolipoprotein e-/- mice[J]. Sci Rep,2018,8(1):14752.
[32].Feng X,Sureda A,Jafari S,et al. Berberine in cardiovascular and metabolic diseases:from mechanisms to therapeutics[J]. Theranostics,2019,9(7):1923-1951.
[33].Li X,Su C,Jiang Z,et al. Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome[J]. NPJ Biofilms Microbiomes,2021,7(1):36.
[34].Annunziata G,Maisto M,Schisano C,et al. Effects of grape pomace polyphenolic extract (Taurisolo?) in reducing TMAO serum levels in humans:preliminary results from a randomized,placebo-controlled,cross-over study[J]. Nutrients,2019,11(1):139.
[35].Wu WK,Panyod S,Ho CT,et al. Dietary allicin reduces transformation of L-carnitine to TMAO through impact on gut microbiota[J]. J Funct Foods,2015,15:408-417.
[36].Koeth RA,Wang Z,Levison BS,et al. Intestinal microbiota metabolism of L-carnitine,a nutrient in red meat,promotes atherosclerosis[J]. Nat Med,2013,19(5):576-585.
[37].Estruch R,Ros E,Salas-Salvadó J,et al. Primary prevention of cardiovascular disease with a Mediterranean diet[J]. N Engl J Med,2013,368(14):1279-1290.
[38].Barrea L,Annunziata G,Muscogiuri G, et al. Trimethylamine N-oxide,Mediterranean diet,and nutrition in healthy,normal-weight adults:also a matter of sex?[J]. Nutrition,2019,62:7-17.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(6):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(6):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(6):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(6):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(6):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(6):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(6):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(6):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(6):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
[11]赵海燕 关秀茹.NLRP3炎症小体介导氧化三甲胺加速动脉粥样硬化的新进展[J].心血管病学进展,2023,(11):1028.[doi:10. 16806/j. cnki. issn. 1004-3934. 2023.11. 000]
 ZHAO Haiyan,GUAN Xiuru.NLRP3 Inflammasome in Mediating Trimethylamine?Oxide Accelerates Atherosclerosis[J].Advances in Cardiovascular Diseases,2023,(6):1028.[doi:10. 16806/j. cnki. issn. 1004-3934. 2023.11. 000]

更新日期/Last Update: 2022-08-05