参考文献/References:
[1] Braunwald E. The war against heart failure:the lancet lecture[J]. Lancet,2015,385(9970):812-824.
[2]王华,梁延春. 中国心力衰竭诊断和治疗指南2018[J].中华心血管病杂志,2018,46(10):760-789.
[3] Gerber Y,Weston SA,Redfield MM,et al. A contemporary appraisal of the heart failure epidemic in Olmsted County,Minnesota,2000 to 2010[J]. JAMA Intern Med,2015,175(6):996-1004.
[4] Vallon V,Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia:the pleiotropic effects of SGLT2 inhibition[J]. Diabetologia,2017,60(2):215-225.
[5] McMurray JJV,Solomon SD,Inzucchi SE,et al. Dapagliflozin in patients with heart failure and reduced ejection fraction[J]. N Engl J Med,2019,381(21):1995-2008.
[6] Packer M,Anker SD,Butler J,et al. Cardiovascular and renal outcomes with empagliflozin in heart failure[J]. N Engl J Med,2020,383(15):1413-1424.
[7]Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction[J].?N Engl J Med,2021,385(16):1451-1461.
[8] Sattar N,McLaren J,Kristensen SL,et al. SGLT2 inhibition and cardiovascular events :why did EMPA-REG outcomes surprise and what were the likely mechanisms?[J]. Diabetologia,2016,59(7):1333-1339.
[9] Lambers Heerspink HJ,de Zeeuw D,Wie L,et al. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes[J]. Diabetes Obes Metab,2013,15(9):853-862.
[10] Cefalu WT,Leiter LA,Yoon KH,et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU):52 week results from a randomised,double-blind,phase 3 non-inferiority trial[J]. Lancet,2013,382(9896):941-950.
[11] Lee PC,Ganguly S,Goh SY. Weight loss associated with sodium-glucose cotransporter-2 inhibition:A review of evidence and underlying mechanisms[J]. Obes Rev,2018,19(12):1630-1641.
[12] Lopaschuk GD,Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors:A state-of-the-art review[J]. JACC Basic Transl Sci,2020,5(6):632-644.
[13] Lopaschuk GD,Ussher JR,Folmes CD,et al. Myocardial fatty acid metabolism in health and disease[J]. Physiol Rev,2010,90(1):207-258.
[14] Nagoshi T,Yoshimura M,Rosano GM,et al. Optimization of cardiac metabolism in heart failure[J]. Curr Pharm Des,2011,17(35):3846-3853.
[15] Joshi SS,Singh T,Newby DE,et al. Sodium-glucose co-transporter 2 inhibitor therapy:Mechanisms of action in heart failure[J]. Heart,,2021,107(13):1032–1038.
[16] Al Jobori H,Daniele G,Adams J,et al. Determinants of the increase in ketone concentration during SGLT2 inhibition in NGT, IFG and T2DM patients[J]. Diabetes Obes Metab ,2017,19(6):809-813.
[17] Ferrannini E,Baldi S,Frascerra S,et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes[J]. Diabetes,2016,65(5):1190-1195.
[18] Santos-Gallego CG,Requena-Ibanez JA,San Antonio R,et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics[J]. J Am Coll Cardiol,2019,73(15):1931-1944.
[19] Oh CM,Cho S,Jang JY,et al. Cardioprotective potential of an SGLT2 inhibitor against doxorubicin-induced heart failure[J]. Korean Circ J,2019,49(12):1183-1195.
[20] Ferrannini E,Muscelli E,Frascerra S,et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients[J]. J Clin Invest,2014,124(2):499-508.
[21] Oldgren J,Laurila S,Akerblom A,et al. Effects of 6 weeks of treatment with dapagliflozin,a sodium-glucose co-transporter-2 inhibitor,on myocardial function and metabolism in patients with type 2 diabetes:a randomized,placebo-controlled,exploratory study[J]. Diabetes Obes Metab,2021,23(7):1505-1517.
[22] Suthahar N,Meijers WC,Sillje HHW,et al. From inflammation to fibrosis-molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities[J]. Curr Heart Fail Rep,2017,14(4):235-250.
[23] Dick SA,Epelman S. Chronic heart failure and inflammation:what do we really know?[J]. Circ Res,2016,119(1):159-176.
[24] Heerspink HJL,Perco P,Mulder S,et al. Canagliflozin reduces inflammation and fibrosis biomarkers:A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease[J]. Diabetologia,2019,62(7):1154-1166.
[25] Koyani CN,Plastira I,Sourij H,et al. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation[J]. Pharmacol Res ,2020,158:104870.
[26] Zhang N,Feng B,Ma X,et al. Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction[J]. Cardiovasc Diabetol,2019,18(1):107.
[27] Byrne NJ,Nobutoshi M,Maayah ZH,et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (Nucleotide-Binding Domain-Like Receptor Protein 3) inflammasome activation in heart failure[J]. Circ Heart Fail,2020,13(1):e006277.
[28] Kim SR,Lee SG,Kim SH,et al.SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease[J]. Nat Commun ,2020,11(1):2127.
[29] Lee HC,Shiou YL,Jhuo SJ,et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats[J]. Cardiovasc Diabetol,2019,18(1):45.
[30] Verma S. Potential mechanisms of sodium-glucose co-transporter 2 inhibitor-related cardiovascular benefits[J]. Am J Cardiol,2019,124 Suppl 1:S36-S44.
[31] Kang S,Verma S,Hassanabad AF,et al. Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts:novel translational clues to explain EMPA-REG outcome results[J]. Can J Cardiol,2020,36(4):543-553.
[32] Lee TM,Chang NC,Lin SZ. Dapagliflozin,a selective SGLT2 inhibitor,attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcte d rat hearts[J]. Free Radic Biol Med,2017,104:298-310.
[33] Shi L,Zhu D,Wang S,et al. Dapagliflozin attenuates cardiac remodeling in mice model of cardiac pressure overload[J]. Am J Hypertens,2019,32(5):452-459.
[34] Packer M. Activation and inhibition of sodium-hydrogen exchanger is a mechanism that links the pathophysiology and treatment of diabetes mellitus with that of heart failure[J]. Circulation,2017,136(16):1548-1559.
[35] Wakabayashi S,Hisamitsu T,Nakamura TY. Regulation of the cardiac Na?/H? exchanger in health and disease[J]. J Mol Cell Cardiol,2013,61:68-76.
[36] Baartscheer A,Schumacher CA,Wust RC,et al. Empagliflozin decreases myocardial cytoplasmic Na? through inhibition of the cardiac Na?/H? exchanger in rats and rabbits[J]. Diabetologia ,2017,60(3):568-573.
[37] Uthman L,Baartscheer A,Bleijlevens B,et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts :inhibition of Na?/H? exchanger ,lowering of cytosolic Na? and vasodilation[J]. Diabetologia ,2018,61(3):722-726.
[38] Iborra-Egea O,Santiago-Vacas E,Yurista SR,et al. Unraveling the molecular mechanism of action of empagliflozin in heart failure with reduced ejection fraction with or without diabetes[J]. JACC Basic Transl Sci,2019,4(7):831-840.
[39] Yaribeygi H,Atkin SL,Butler AE,et al. Sodium-glucose cotransporter inhibitors and oxidative stress:an update[J]. J Cell Physiol,2019,234(4):3231-3237.
[40] van der Pol A,van Gilst WH,Voors AA,et al. Treating oxidative stress in heart failure:past,present and future[J]. Eur J Heart Fail,2019,21(4):425-435.
[41] Tahara A,Kurosaki E,Yokono M,et al. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia ,hyperlipidemia,hepatic steatosis,oxidative stress,inflammation,and obesity in type 2 diabetic mice[J]. Eur J Pharmacol,2013,715(1-3):246-255.
[42] Li C,Zhang J,Xue M,et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart[J]. Cardiovasc Diabetol,2019,18(1):15.
[43] Mazer CD,Hare GMT,Connelly PW,et al. Effect of empagliflozin on erythropoietin levels,iron stores,and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease[J]. Circulation,2020,141(8):704-707.
[44] Sano M,Takei M,Shiraishi Y,et al. Increased hematocrit during sodium-glucose cotransporter 2 inhibitor therapy indicates recovery of tubulointerstitial function in diabetic kidneys[J]. J Clin Med Res,2016,8(12):844-847.
[45] Takeuchi T,Tanaka T,Watanabe M,et al. Effects of sodium-glucose cotransporter 2 inhibitors on serum erythropoietin levels in patients with type 2 diabetes[J]. J Japan Diabetes Soc,2019,62(2):69-75.
[46] Kim JA,Wei Y,Sowers JR. Role of mitochondrial dysfunction in insulin resistance[J]. Circ Res,2008,102(4):401-414.
[47] Yurista SR,SilljéHHW,Oberdorf-Maass SU,et al. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction[J]. Eur J Heart Fail,2019,21(7):862-873.
[48] Durak A,Olgar Y,Degirmenci S,et al. A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats[J]. Cardiovasc Diabetol ,2018,17(1):144.
相似文献/References:
[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展收稿时间:2021-07-23,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(12):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展收稿时间:2021-07-23,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(12):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展收稿时间:2021-07-23,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(12):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展收稿时间:2021-07-23,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(12):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展收稿时间:2021-07-23,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(12):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展收稿时间:2021-07-23,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on
Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(12):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展收稿时间:2021-07-23,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(12):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展收稿时间:2021-07-23,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(12):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展收稿时间:2021-07-23,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(12):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展收稿时间:2021-07-23,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(12):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
[11]张阳扬 尹德录.新型降糖药物在心力衰竭中的应用前[J].心血管病学进展收稿时间:2021-07-23,2020,(6):599.[doi:10.16806/j.cnki.issn.1004-3934.20.06.010]
ZHANG Yangyang,YIN Delu.Prospect of New Glucose-lowering Drugs in Heart Failure[J].Advances in Cardiovascular Diseases,2020,(12):599.[doi:10.16806/j.cnki.issn.1004-3934.20.06.010]
[12]和丽丽 左庆娟 张国瑞 郭艺芳.钠-葡萄糖协同转运蛋白2抑制剂使心力衰竭获益的作用机制[J].心血管病学进展收稿时间:2021-07-23,2020,(9):954.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.017]
HE Lili,ZUO Qingjuan,ZHANG Guorui,et al.Mechanism of Benefit of Sodium-glucose Co-transporter 2 Inhibitors in Heart Failure[J].Advances in Cardiovascular Diseases,2020,(12):954.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.017]
[13]杨宜恒 郑振中.钠-葡萄糖协同转运蛋白2抑制剂对于未合并2型糖尿病的心力衰竭患者治疗的研究进展[J].心血管病学进展收稿时间:2021-07-23,2021,(12):1093.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.009]
YANG Yiheng,ZHENG Zhenzhong.Treatment of Sodium-Glucose Co-Transporter 2 Inhibitor in Patients with Heart Failure without Type 2 Diabetes[J].Advances in Cardiovascular Diseases,2021,(12):1093.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.009]