[1]张敏 龙开超 唐毅 刘君宇 彭建强.钠-葡萄糖协同转运蛋白2抑制剂使心力衰竭获益机制研究进展[J].心血管病学进展收稿时间:2021-07-23,2021,(12):1096-1100.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.010]
 ZHANG Min,LONG Kaichao,TANG Yi,et al.Mechanism of the Benefit of Sodium-Glucose?o-Transporter 2 Inhibitors in Heart Failure[J].Advances in Cardiovascular Diseases,2021,(12):1096-1100.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.010]
点击复制

钠-葡萄糖协同转运蛋白2抑制剂使心力衰竭获益机制研究进展(/HTML)
分享到:

《心血管病学进展》收稿时间:2021-07-23[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年12期
页码:
1096-1100
栏目:
综述
出版日期:
2021-12-25

文章信息/Info

Title:
Mechanism of the Benefit of Sodium-Glucose?o-Transporter 2 Inhibitors in Heart Failure
作者:
张敏1 龙开超2 唐毅2 刘君宇1 彭建强2
(1.湖南师范大学附属第一医院(湖南省人民医院)湖南省心力衰竭临床医学研究中心,湖南 长沙 410005;2.湖南省人民医院心血管内科 湖南师范大学附属第一医院 湖南省心力衰竭临床医学研究中心,湖南 长沙 410005)
Author(s):
ZHANG Min1 LONG Kaichao2 TANG Yi2 LIU Junyu1 PENG Jianqiang2
?1.The First Affiliated Hospital of Human Normal University(Hunan Provincial Peoples Hospital),Clinical Medical Research Center for Heart Failure of Hunan Province,Changsha 410005,Hunan,China; 2.Department of Cardiology,Hunan Provincial Peoples Hospital,the First Affiliated Hospital of Human Normal University,Clinical Medical Research Center for Heart Failure of Hunan Province,Changsha 410005,Hunan,China)
关键词:
钠-葡萄糖协同转运蛋白2抑制剂心力衰竭机制
Keywords:
Sodium-glucose co-transport 2 inhibitors Heart failure Mechanisms
DOI:
10.16806/j.cnki.issn.1004-3934.2021.12.010
摘要:
钠-葡萄糖协同转运蛋白2抑制剂 (SGLT-2i)作为一类新型降糖药,不仅可降低血糖,而且可减小慢性心力衰竭患者心力衰竭恶化和心血管死亡的风险,具有显著的心血管益处,而这种获益的确切机制仍未明确。目前提出的SGLT-2i心脏获益的可能机制包括改善心肌能量代谢,减轻炎症反应,预防不良心脏重构,抑制钠氢交换体,减少氧化应激,提高红细胞生成素水平,改善线粒体功能障碍等。本文旨在对SGLT-2i心脏获益可能机制进行综述。
Abstract:
Sodium-glucose cotransporter 2 inhibitors(SGLT-2i) are developed as novel antihyperglycemic agents which can decrease blood glucose levels ,reduce the incidence of heart failure and cardiovascular death in patients with chronic heart failure,showing dramatic beneficial cardiovascular outcomes. However,the exact mechanism of this benefit still remain unclear. Several possible mechanisms responsible for the cardiac benefit of SGLT-2i have been proposed,including improving myocardial energy metabolism,reducing inflammation,preventing adverse cardiac remodeling,inhibiting sodium-hydrogen exchangers,reducing oxidative stress,increasing erythropoietin levels,and improving mitochondrial dysfunction. This article thus aims to review the possible mechanisms of cardiac benefits of SGLT-2i.

参考文献/References:

[1] Braunwald E. The war against heart failure:the lancet lecture[J]. Lancet,2015,385(9970):812-824.

[2]王华,梁延春. 中国心力衰竭诊断和治疗指南2018[J].中华心血管病杂志,2018,46(10):760-789.

[3] Gerber Y,Weston SA,Redfield MM,et al. A contemporary appraisal of the heart failure epidemic in Olmsted County,Minnesota,2000 to 2010[J]. JAMA Intern Med,2015,175(6):996-1004.

[4] Vallon V,Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia:the pleiotropic effects of SGLT2 inhibition[J]. Diabetologia,2017,60(2):215-225.

[5] McMurray JJV,Solomon SD,Inzucchi SE,et al. Dapagliflozin in patients with heart failure and reduced ejection fraction[J]. N Engl J Med,2019,381(21):1995-2008.

[6] Packer M,Anker SD,Butler J,et al. Cardiovascular and renal outcomes with empagliflozin in heart failure[J]. N Engl J Med,2020,383(15):1413-1424.

[7]Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction[J].?N Engl J Med,2021,385(16):1451-1461.

[8] Sattar N,McLaren J,Kristensen SL,et al. SGLT2 inhibition and cardiovascular events :why did EMPA-REG outcomes surprise and what were the likely mechanisms?[J]. Diabetologia,2016,59(7):1333-1339.

[9] Lambers Heerspink HJ,de Zeeuw D,Wie L,et al. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes[J]. Diabetes Obes Metab,2013,15(9):853-862.

[10] Cefalu WT,Leiter LA,Yoon KH,et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU):52 week results from a randomised,double-blind,phase 3 non-inferiority trial[J]. Lancet,2013,382(9896):941-950.

[11] Lee PC,Ganguly S,Goh SY. Weight loss associated with sodium-glucose cotransporter-2 inhibition:A review of evidence and underlying mechanisms[J]. Obes Rev,2018,19(12):1630-1641.

[12] Lopaschuk GD,Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors:A state-of-the-art review[J]. JACC Basic Transl Sci,2020,5(6):632-644.

[13] Lopaschuk GD,Ussher JR,Folmes CD,et al. Myocardial fatty acid metabolism in health and disease[J]. Physiol Rev,2010,90(1):207-258.

[14] Nagoshi T,Yoshimura M,Rosano GM,et al. Optimization of cardiac metabolism in heart failure[J]. Curr Pharm Des,2011,17(35):3846-3853.

[15] Joshi SS,Singh T,Newby DE,et al. Sodium-glucose co-transporter 2 inhibitor therapy:Mechanisms of action in heart failure[J]. Heart,,2021,107(13):1032–1038.

[16] Al Jobori H,Daniele G,Adams J,et al. Determinants of the increase in ketone concentration during SGLT2 inhibition in NGT, IFG and T2DM patients[J]. Diabetes Obes Metab ,2017,19(6):809-813.

[17] Ferrannini E,Baldi S,Frascerra S,et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes[J]. Diabetes,2016,65(5):1190-1195.

[18] Santos-Gallego CG,Requena-Ibanez JA,San Antonio R,et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics[J]. J Am Coll Cardiol,2019,73(15):1931-1944.

[19] Oh CM,Cho S,Jang JY,et al. Cardioprotective potential of an SGLT2 inhibitor against doxorubicin-induced heart failure[J]. Korean Circ J,2019,49(12):1183-1195.

[20] Ferrannini E,Muscelli E,Frascerra S,et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients[J]. J Clin Invest,2014,124(2):499-508.

[21] Oldgren J,Laurila S,Akerblom A,et al. Effects of 6 weeks of treatment with dapagliflozin,a sodium-glucose co-transporter-2 inhibitor,on myocardial function and metabolism in patients with type 2 diabetes:a randomized,placebo-controlled,exploratory study[J]. Diabetes Obes Metab,2021,23(7):1505-1517.

[22] Suthahar N,Meijers WC,Sillje HHW,et al. From inflammation to fibrosis-molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities[J]. Curr Heart Fail Rep,2017,14(4):235-250.

[23] Dick SA,Epelman S. Chronic heart failure and inflammation:what do we really know?[J]. Circ Res,2016,119(1):159-176.

[24] Heerspink HJL,Perco P,Mulder S,et al. Canagliflozin reduces inflammation and fibrosis biomarkers:A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease[J]. Diabetologia,2019,62(7):1154-1166.

[25] Koyani CN,Plastira I,Sourij H,et al. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation[J]. Pharmacol Res ,2020,158:104870.

[26] Zhang N,Feng B,Ma X,et al. Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction[J]. Cardiovasc Diabetol,2019,18(1):107.

[27] Byrne NJ,Nobutoshi M,Maayah ZH,et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (Nucleotide-Binding Domain-Like Receptor Protein 3) inflammasome activation in heart failure[J]. Circ Heart Fail,2020,13(1):e006277.

[28] Kim SR,Lee SG,Kim SH,et al.SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease[J]. Nat Commun ,2020,11(1):2127.

[29] Lee HC,Shiou YL,Jhuo SJ,et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats[J]. Cardiovasc Diabetol,2019,18(1):45.

[30] Verma S. Potential mechanisms of sodium-glucose co-transporter 2 inhibitor-related cardiovascular benefits[J]. Am J Cardiol,2019,124 Suppl 1:S36-S44.

[31] Kang S,Verma S,Hassanabad AF,et al. Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts:novel translational clues to explain EMPA-REG outcome results[J]. Can J Cardiol,2020,36(4):543-553.

[32] Lee TM,Chang NC,Lin SZ. Dapagliflozin,a selective SGLT2 inhibitor,attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcte d rat hearts[J]. Free Radic Biol Med,2017,104:298-310.

[33] Shi L,Zhu D,Wang S,et al. Dapagliflozin attenuates cardiac remodeling in mice model of cardiac pressure overload[J]. Am J Hypertens,2019,32(5):452-459.

[34] Packer M. Activation and inhibition of sodium-hydrogen exchanger is a mechanism that links the pathophysiology and treatment of diabetes mellitus with that of heart failure[J]. Circulation,2017,136(16):1548-1559.

[35] Wakabayashi S,Hisamitsu T,Nakamura TY. Regulation of the cardiac Na?/H? exchanger in health and disease[J]. J Mol Cell Cardiol,2013,61:68-76.

[36] Baartscheer A,Schumacher CA,Wust RC,et al. Empagliflozin decreases myocardial cytoplasmic Na? through inhibition of the cardiac Na?/H? exchanger in rats and rabbits[J]. Diabetologia ,2017,60(3):568-573.

[37] Uthman L,Baartscheer A,Bleijlevens B,et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts :inhibition of Na?/H? exchanger ,lowering of cytosolic Na? and vasodilation[J]. Diabetologia ,2018,61(3):722-726.

[38] Iborra-Egea O,Santiago-Vacas E,Yurista SR,et al. Unraveling the molecular mechanism of action of empagliflozin in heart failure with reduced ejection fraction with or without diabetes[J]. JACC Basic Transl Sci,2019,4(7):831-840.

[39] Yaribeygi H,Atkin SL,Butler AE,et al. Sodium-glucose cotransporter inhibitors and oxidative stress:an update[J]. J Cell Physiol,2019,234(4):3231-3237.

[40] van der Pol A,van Gilst WH,Voors AA,et al. Treating oxidative stress in heart failure:past,present and future[J]. Eur J Heart Fail,2019,21(4):425-435.

[41] Tahara A,Kurosaki E,Yokono M,et al. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia ,hyperlipidemia,hepatic steatosis,oxidative stress,inflammation,and obesity in type 2 diabetic mice[J]. Eur J Pharmacol,2013,715(1-3):246-255.

[42] Li C,Zhang J,Xue M,et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart[J]. Cardiovasc Diabetol,2019,18(1):15.

[43] Mazer CD,Hare GMT,Connelly PW,et al. Effect of empagliflozin on erythropoietin levels,iron stores,and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease[J]. Circulation,2020,141(8):704-707.

[44] Sano M,Takei M,Shiraishi Y,et al. Increased hematocrit during sodium-glucose cotransporter 2 inhibitor therapy indicates recovery of tubulointerstitial function in diabetic kidneys[J]. J Clin Med Res,2016,8(12):844-847.

[45] Takeuchi T,Tanaka T,Watanabe M,et al. Effects of sodium-glucose cotransporter 2 inhibitors on serum erythropoietin levels in patients with type 2 diabetes[J]. J Japan Diabetes Soc,2019,62(2):69-75.

[46] Kim JA,Wei Y,Sowers JR. Role of mitochondrial dysfunction in insulin resistance[J]. Circ Res,2008,102(4):401-414.

[47] Yurista SR,SilljéHHW,Oberdorf-Maass SU,et al. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction[J]. Eur J Heart Fail,2019,21(7):862-873.

[48] Durak A,Olgar Y,Degirmenci S,et al. A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats[J]. Cardiovasc Diabetol ,2018,17(1):144.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展收稿时间:2021-07-23,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(12):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展收稿时间:2021-07-23,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(12):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展收稿时间:2021-07-23,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(12):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展收稿时间:2021-07-23,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(12):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展收稿时间:2021-07-23,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(12):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展收稿时间:2021-07-23,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(12):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展收稿时间:2021-07-23,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(12):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展收稿时间:2021-07-23,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
 GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(12):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展收稿时间:2021-07-23,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(12):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展收稿时间:2021-07-23,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
 WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(12):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
[11]张阳扬 尹德录.新型降糖药物在心力衰竭中的应用前[J].心血管病学进展收稿时间:2021-07-23,2020,(6):599.[doi:10.16806/j.cnki.issn.1004-3934.20.06.010]
 ZHANG Yangyang,YIN Delu.Prospect of New Glucose-lowering Drugs in Heart Failure[J].Advances in Cardiovascular Diseases,2020,(12):599.[doi:10.16806/j.cnki.issn.1004-3934.20.06.010]
[12]和丽丽 左庆娟 张国瑞 郭艺芳.钠-葡萄糖协同转运蛋白2抑制剂使心力衰竭获益的作用机制[J].心血管病学进展收稿时间:2021-07-23,2020,(9):954.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.017]
 HE Lili,ZUO Qingjuan,ZHANG Guorui,et al.Mechanism of Benefit of Sodium-glucose Co-transporter 2 Inhibitors in Heart Failure[J].Advances in Cardiovascular Diseases,2020,(12):954.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.017]
[13]杨宜恒 郑振中.钠-葡萄糖协同转运蛋白2抑制剂对于未合并2型糖尿病的心力衰竭患者治疗的研究进展[J].心血管病学进展收稿时间:2021-07-23,2021,(12):1093.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.009]
 YANG Yiheng,ZHENG Zhenzhong.Treatment of Sodium-Glucose Co-Transporter 2 Inhibitor in Patients with Heart Failure without Type 2 Diabetes[J].Advances in Cardiovascular Diseases,2021,(12):1093.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.009]

备注/Memo

备注/Memo:
基金项目:湖南省临床医疗技术创新引导项目(2020SK50922),湖南省社会发展领域重点研发项目(2019SK2021),湖南省自然科学基金 (2021JJ40294),国家自然科学基金 (81800056),湖南省科技创新重点工程(2020SK1013)?div>通信作者:彭建强,E-mail:2925772400@qq.com?/div>
收稿时间:2021-07-22

更新日期/Last Update: 2022-01-07