[1]毕一鸣 曹丰.内皮细胞功能异常与动脉粥样硬化的研究进展[J].心血管病学进展,2022,(2):150.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.014]
 BI YimingCAO Feng.Vascular Endothelial Cells Involved?n the Pathophysiological Process of Atherosclerosis[J].Advances in Cardiovascular Diseases,2022,(2):150.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.014]
点击复制

内皮细胞功能异常与动脉粥样硬化的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年2期
页码:
150
栏目:
综述
出版日期:
2022-02-25

文章信息/Info

Title:
Vascular Endothelial Cells Involved?n the Pathophysiological Process of Atherosclerosis
作者:
毕一鸣 曹丰
(解放军医学院 解放军总医院第二医学中心国家老年疾病临床医学研究中心,北京 100853)
Author(s):
BI YimingCAO Feng
Medical School of Chinese PLA,Department of Geriatric Cardiology & National Clinical Research Center for Geriatric Diseases Medical Center of Chinese PLA General Hospital, Beijing 100853,China)
关键词:
内皮细胞动脉粥样硬化心血管疾病
Keywords:
Endothelial cellAtherosclerosisCardiovascular disease
DOI:
10.16806/j.cnki.issn.1004-3934.2022.02.014
摘要:
血管内皮细胞参与构成人体的生理屏障和维持人体内环境稳态,并且为适应内环境的动态变化及满足人体不同组织新陈代谢的需要,不同组织的内皮细胞具有功能差异性和组织特异性。心脏血管内皮细胞参与维持心脏内环境的稳定,当内皮细胞因高脂血症、高血糖、氧化应激、炎症反应及其他代谢因素发生功能障碍,会参与心血管疾病的病理生理过程,例如动脉粥样硬化、心肌缺血再灌注损伤和心室重塑。现综述血管内皮细胞的结构和功能,探讨血管剪切力对于内皮细胞的重要作用,分析内皮细胞功能障碍在动脉粥样硬化病理生理过程中的作用和针对内皮细胞功能障碍的治疗策略和方法。
Abstract:
Vascular endothelial cells are involved in the formation of physiological barrier and maintenance of homeostasis in human body. In order to adapt to the dynamic changes of internal environment and meet the metabolic needs of different tissues, endothelial cells from different tissues have different functions and tissue specificity. Endothelial cells are involved in maintaining the stability of the internal environment of the heart. When endothelial cells are dysfunctional due to hyperlipidemia, hyperglycemia, oxidative stress, inflammatory reaction and other metabolic factors, they will participate in the pathophysiological process of cardiovascular disease, such as atherosclerosis, myocardial ischemia-reperfusion injury and ventricular remodeling. This review summarizes the structure and function of vascular endothelial cells in the heart, discusses the important role of vascular shear force on endothelial cells, analyzes the role of endothelial cell dysfunction in the pathophysiological process of atherosclerosis and the treatment strategies and methods for endothelial cell dysfunction

参考文献/References:

[1]Donato AJ,Machin DR,Lesniewski LA. Mechanisms of dysfunction in the aging vasculature and role in age-related disease[J]. Circ Res,2018,123(7):825-848.

[2]Pi X,Xie L,Patterson C. Emerging roles of vascular endothelium in metabolic homeostasis[J]. Circ Res,2018,123(4):477-494.

[3]Minami T,Muramatsu M,Kume T. Organ/Tissue-specific vascular endothelial cell heterogeneity in health and disease[J]. Biol Pharm Bull,2019,42(10):1609-1619.

[4]Augustin HG, Koh GY. Organotypic vasculature:from descriptive heterogeneity to functional pathophysiology[J]. Science,2017,357(6353):eaal2379.

[5]Wong BW,Marsch E,Treps L,et al. Endothelial cell metabolism in health and disease:impact of hypoxia[J]. EMBO J,2017,36(15):2187-2203.

[6]Sluiter TJ,van Buul JD,Huveneers S,et al. Endothelial barrier function and leukocyte transmigration in atherosclerosis[J]. Biomedicines,2021,9(4):328.

[7]Alabi RO,Farber G,Blobel CP. Intriguing roles for endothelial ADAM10/Notch signaling in the development of organ-specific vascular beds[J]. Physiol Rev,2018,98(4):2025-2061.

[8]Krüger-Genge A,Blocki A,Franke RP,et al. Vascular endothelial cell biology:an update[J]. Int J Mol Sci,2019,20(18):4411.

[9]Koupenova M,Kehrel BE,Corkrey HA,et al. Thrombosis and platelets:an update[J]. Eur Heart J,2017,38(11):785-791.

[10]Heo KS,Fujiwara K,Abe J. Shear stress and atherosclerosis[J]. Mol Cells,2014,37(6):435-440.

[11]Niu N,Xu S,Xu Y,et al. Targeting mechanosensitive transcription factors in atherosclerosis[J]. Trends Pharmacol Sci,2019,40(4):253-266.

[12]Lu YW,Martino N,Gerlach BD,et al. MEF2 (myocyte enhancer factor 2) is essential for endothelial homeostasis and the atheroprotective gene expression program[J]. Arterioscler Thromb Vasc Biol,2021,41(3):1105-1123.

[13]Chen HJ,Tas SW,de Winther MPJ. Type-Ⅰ interferons in atherosclerosis[J]. J Exp Med,2020,217(1):e20190459.

[14]Li M,Wang Z,Wang P,et al. TFEB:a emerging regulator in lipid homeostasis for atherosclerosis[J]. Front Physiol,2021,12:639920.

[15]Lu H,Fan Y,Qiao C,et al. TFEB inhibits endothelial cell inflammation and reduces atherosclerosis[J]. Sci Signal,2017,10(464):eaah4214.

[16]Gimbrone MA Jr,García-Carde?a G. Endothelial cell dysfunction and the pathobiology of atherosclerosis[J]. Circ Res,2016,118(4):620-636.

[17]Incalza MA,D’Oria R,Natalicchio A,et al. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases[J]. Vascul Pharmacol,2018,100:1-19.

[18]Libby P,Buring JE,Badimon L,et al. Atherosclerosis[J]. Nat Rev Dis Primers,2019,5(1):56.

[19]Souilhol C,Harmsen MC,Evans PC,et al. Endothelial-mesenchymal transition in atherosclerosis[J]. Cardiovasc Res,2018,114(4):565-577.

[20]Chen PY,Schwartz MA,Simons M. Endothelial-to-mesenchymal transition,vascular inflammation,and atherosclerosis[J]. Front Cardiovasc Med,2020,7:53.

[21]Chistiakov DA,Melnichenko AA,Myasoedova VA,et al. Mechanisms of foam cell formation in atherosclerosis[J]. J Mol Med (Berl),2017,95(11):1153-1165.

[22]Chistiakov DA,Orekhov AN,Bobryshev YV. The impact of FOXO-1 to cardiac pathology in diabetes mellitus and diabetes-related metabolic abnormalities[J]. Int J Cardiol,2017,245:236-244.

[23]Paone S,Baxter AA,Hulett MD,et al. Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis[J]. Cell Mol Life Sci,2019,76(6):1093-1106.

[24]Jenkins NT,Padilla J,Boyle LJ,et al. Disturbed blood flow acutely induces activation and apoptosis of the human vascular endothelium[J]. Hypertension,2013,61(3):615-621.

[25]Tremblay JC,Thom SR,Yang M,et al. Oscillatory shear stress,flow-mediated dilatation,and circulating microparticles at sea level and high altitude[J]. Atherosclerosis,2017,256:115-122.

[26]Shu Z,Tan J,Miao Y,et al. The role of microvesicles containing microRNAs in vascular endothelial dysfunction[J]. J Cell Mol Med,2019,23(12):7933-7945.

[27]Chen F,Ye X,Jiang H,et al. MicroRNA-151 attenuates apoptosis of endothelial cells induced by oxidized low-density lipoprotein by targeting interleukin-17A (IL-17A)[J]. J Cardiovasc Transl Res,2021,14(3):400-408.

[28]Zhong S,Li L,Shen X,et al. An update on lipid oxidation and inflammation in cardiovascular diseases[J]. Free Radic Biol Med,2019,144:266-278.

[29]Zhang Q,Pan Y,Ma X,et al. Elevated secretion of aldosterone increases TG/HDL-C ratio and potentiates the ox-LDL-induced dysfunction of HUVEC[J]. Cell J,2021,23(1):61-69.

[30]Su G,Sun G,Lv J,et al. Hsa_circ_0004831 downregulation is partially responsible for atorvastatinalleviated human umbilical vein endothelial cell injuries induced by ox-LDL through targeting the miR-182-5p/CXCL12 axis[J]. BMC Cardiovasc Disord,2021,21(1):221.

[31]Yamagata K. Soy isoflavones inhibit endothelial cell dysfunction and prevent cardiovascular disease[J].?J Cardiovasc Pharmacol,2019,74(3):201-209.

[32]Cinegaglia N,Acosta-Navarro J,Rainho C,et al. Association of omnivorous and vegetarian diets with antioxidant defense mechanisms in men[J]. J Am Heart Assoc,2020,9(12):e015576.

[33]Chen YT,Yuan HX,Ou ZJ,et al. Microparticles (exosomes) and atherosclerosis[J]. Curr Atheroscler Rep,2020,22(6):23.

[34]Henning RJ. Cardiovascular exosomes and microRNAs in cardiovascular physiology and pathophysiology[J]. J Cardiovasc Transl Res,2021,14(2):195-212.

[35]Wang C,Li Z,Liu Y,et al. Exosomes in atherosclerosis:performers,bystanders,biomarkers,and therapeutic targets[J]. Theranostics,2021,11(8):3996-4010.

[36]Wu G,Zhang J,Zhao Q,et al. Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment[J]. Angew Chem Int Ed Engl,2020,59(10):4068-4074.

[37]Li S,Sengupta D,Chien S. Vascular tissue engineering:from in vitro to in situ[J]. Wiley Interdiscip Rev Syst Biol Med,2014,6(1):61-76.

[38]Huang F,Hsieh YF,Qiu X,et al. Engineering the composition of microfibers to enhance the remodeling of a cell-free vascular graft[J]. Nanomaterials (Basel),2021,11(6):1613.

[39]Liu J,Long H,Zeuschner D,et al. Synthetic extracellular matrices with tailored adhesiveness and degradability support lumen formation during angiogenic sprouting[J]. Nat Commun,2021,12(1):3402.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(2):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(2):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(2):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(2):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(2):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(2):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(2):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(2):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(2):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(2):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
[11]阎文江 陈良 杨晶晶.超声分子成像技术在靶向诊疗动脉粥样硬化中的进展[J].心血管病学进展,2022,(4):309.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.006]
 YAN Wenjiang,CHEN Liang,YANG Jingjing.Molecular Ultrasound Imaging Technology for Targeting Diagnosis?nd Treatment of Atherosclerosis?/html>[J].Advances in Cardiovascular Diseases,2022,(2):309.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.006]

更新日期/Last Update: 2022-08-19