[1]罗之晟 王超 刘家汝 关秀茹.Mhem/M(Hb)型巨噬细胞极化在动脉粥样硬化病变中的作用[J].心血管病学进展,2021,(12):1120-1123.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.016]
 LUO Zhisheng,WANG Chao,LIU Jiaru,et al.Role of Mhem/M(Hb) Macrophage Polarization in Atherosclerotic Lesions[J].Advances in Cardiovascular Diseases,2021,(12):1120-1123.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.016]
点击复制

Mhem/M(Hb)型巨噬细胞极化在动脉粥样硬化病变中的作用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年12期
页码:
1120-1123
栏目:
综述
出版日期:
2021-12-25

文章信息/Info

Title:
Role of Mhem/M(Hb) Macrophage Polarization in Atherosclerotic Lesions
作者:
罗之晟 王超 刘家汝 关秀茹
(哈尔滨医科大学附属第一医院检验科,黑龙江 哈尔滨 150001)
Author(s):
LUO Zhisheng WANG Chao LIU Jiaru GUAN Xiuru
(Department of Laboratory Diagnostics,First Affiliated Hospital of Harbin Medical University,Harbin 150001,Heilongjiang,China)
关键词:
动脉粥样硬化巨噬细胞极化Mhem/M(Hb)
Keywords:
Atherosclerosis Macrophage polarization Mhem/M(Hb)
DOI:
10.16806/j.cnki.issn.1004-3934.2021.12.016
摘要:
动脉粥样硬化是一种脂质驱动、炎症性的慢性疾病。巨噬细胞极化是动脉粥样硬化形成、进展的重要参与者与潜在治疗靶点。Mhem/M(Hb)型巨噬细胞[Mhem/M(Hb)]是一种出血相关的巨噬细胞亚群,现就 Mhem/M(Hb)的自身特点及其在斑块中的来源发展进行介绍,探究Mhem/M(Hb)在斑块中发挥的作用以及相应的分子机制和信号通路,为抗动脉粥样硬化治疗寻找新的策略和靶点。
Abstract:
Atherosclerosis (AS) is a lipid driven, inflammatory chronic disease. Macrophage polarization is an important participant and potential therapeutic target in the formation and progression of atherosclerosis. Mhem/M(Hb) is a subpopulation of macrophages associated with hemorrhage. This paper introduces the characteristics of Mhem/M(Hb) and its origin and development in atherosclerotic plaques, explores their roles in atherosclerotic plaques, and the corresponding potential molecular mechanism and signal pathway, so as to find new strategies and targets for anti-atherosclerotic therapy.

参考文献/References:

[1].Xu HL,Jiang XJ,Chen WZ,et al. Vascular macrophages in atherosclerosis[J]. J Immunol Res,2019,2019:4354786.
[2].Yang S,Yuan HQ,Hao YM,et al. Macrophage polarization in atherosclerosis[J]. Clin Chim Acta,2020,501:142-146.
[3].Barrett TJ. Macrophages in atherosclerosis regression[J]. Arterioscler Thromb Vasc Biol,2020,40(1):20-33.
[4].Domschke G,Gleissner CA. CXCL4-induced macrophages in human atherosclerosis[J]. Cytokine,2019,122:154141.
[5].Serbulea V,DeWeese D,Leitinger N. The effect of oxidized phospholipids on phenotypic polarization and function of macrophages[J]. Free Radic Biol Med,2017,111:156-168.
[6].Boyle JJ, Harrington HA, Piper E,et al. Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype[J]. Am J Pathol,2009,174(3):1097-108.
[7].Luo Y,Lu S,Gao Y, et al. Araloside C attenuates atherosclerosis by modulating macrophage polarization via Sirt1-mediated autophagy[J]. Aging 2020,12(2):1704-1724.
[8].Guo L,Harari E,Virmani R,et al. Linking hemorrhage, angiogenesis, macrophages, and iron metabolism in atherosclerotic vascular diseases[J]. Arterioscler Thromb Vasc Biol,2017,37(4):e33-e39.
[9].Boyle JJ. Heme and haemoglobin direct macrophage Mhem phenotype and counter foam cell formation in areas of intraplaque haemorrhage[J]. Curr Opin Lipidol,2012,23(5):453-461.
[10].Finn AV,Nakano M,Polavarapu R,et al. Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques[J]. J Am Coll Cardiol,2012,59(2):166-177.
[11].Liu J,Yang BW,Wang YT et al. Polychlorinated biphenyl quinone promotes macrophage polarization to CD163(+) cells through Nrf2 signaling pathway[J]. Environ Pollut,2020,257:113587.
[12].Mollera HJ,Nielsenb MJ,Manieckia MB,et al. Soluble macrophage-derived CD163: a homogenous ectodomain protein with a dissociable haptoglobin-hemoglobin binding[J]. Immunobiology,2010,215(5):406-412.
[13].Law SK,Micklem KJ,Shaw JM,et al. A new macrophage differentiation antigen which is a member of the scavenger receptor superfamily[J]. Eur J Immunol,1993,23(9):2320-2305.
[14].Kristiansen M,Graversen JH,Jacobsen C,et al. Identification of the haemoglobin scavenger receptor[J]. Nature,2001,409(6817):198-201.
[15].van Gorp H,Delputte PL,Nauwynck HJ,et al. Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy[J]. Mol Immunol,2010,47(7-8):1650-1660.
[16].Puig N,Jiménez-Xarrié E3,Camps-Renom P,et al. Search for reliable circulating biomarkers to predict carotid plaque vulnerability[J]. Int J Mol Sci,2020,21(21):8236.
[17].Michel JB,Martin-Ventura LJ,Nicoletti A,et.al. Pathology of human plaque vulnerability: Mechanisms and consequences of intraplaque haemorrhages[J]. Atherosclerosis,2014,234(2):311-319.
[18].Michel JB,Martin-Ventura JL. Red blood cells and hemoglobin in human atherosclerosis and related arterial diseases[J]. Int J Mol Sci,2020,21(18):6756.
[19].Boyle JJ,Johns M,Kampfer T,et al. Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection[J]. Circ Res,2012,110(1):20-33.
[20].Bengtsson E,Hultman K,Edsfeldt A,et al. CD163+ macrophages are associated with a vulnerable plaque phenotype in human carotid plaques[J]. Sci Rep,2020,10(1):14362.
[21].Tabas I,Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis[J]. Circ Res,2016,118(4):653-667.
[22].Seneviratne A,Han Y,Wong E,et al. Hematoma resolution in vivo is directed by activating transcription factor 1[J]. Circ Res,2020,127(7):928-944.
[23].Gutierrez-Munoz C,Mendez-Barbero N,Svendsen P,et al. CD163 deficiency increases foam cell formation and plaque progression in atherosclerotic mice[J]. FASEB J,2020,34(11):14960-14976.
[24].Fischer-Riepe L,Daber N,Schulte-Schrepping J,et al. CD163 expression defines specific, IRF8-dependent, immune-modulatory macrophages in the bone marrow[J]. J Allergy Clin Immunol,2020,146(5):1137-1151.
[25].Liu H,Lin D,Xiang H,et al. The role of tumor necrosis factor-like weak inducer of apoptosis in atherosclerosis via its two different receptors[J]. Exp Ther Med,2017,14(2):891-897.
[26].Akahori H,Karmali V,Polavarapu R,et al. CD163 interacts with TWEAK to regulate tissue regeneration after ischaemic injury[J]. Nat Commun,2015,6:7792.
[27].Aristoteli LP,Mollerb HJ,Baileyd B,et al. The monocytic lineage specific soluble CD163 is a plasma marker of coronary atherosclerosis[J]. Atherosclerosis,2006,184(2):342-347.
[28].David C,Divard G,Abbas R,et al. Soluble CD163 is a biomarker for accelerated atherosclerosis in systemic lupus erythematosus patients at apparent low risk for cardiovascular disease[J]. Scand J Rheumatol,2020,49(1):33-37.
[29].Skytthe MK, Graversen HJ,Moestrup SK. Targeting of CD163(+) Macrophages in Inflammatory and Malignant Diseases[J]. Int J Mol Sci,2020,21(15):5497.
[30].Roy-O’Reilly M, Zhu L,Atadja L,et al. Soluble CD163 in intracerebral hemorrhage: biomarker for perihematomal edema[J]. Ann Clin Transl Neurol,2017,4(11):793-800.
[31].Graversen JH,Moestrup SK. Drug Trafficking into macrophages via the endocytotic receptor CD163[J]. Membranes (Basel),2015,5(2):228-252.
[32].Svendsen P,Graversen JH,Etzerodt A,et al.Antibody-directed glucocorticoid targeting to CD163 in M2-type macrophages attenuates fructose-induced liver inflammatory changes[J]. Mol Ther Methods Clin Dev,2017,4:50-61.
[33].Guo L,Akahori H,Harari E,et al.CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis[J]. J Clin Invest,2018,128(3):1106-1124.
[34].Otsuka F,Zhao XQ,Trout HH,et al. Community-based statins and advanced carotid plaque: role of CD163 positive macrophages in lipoprotein-associated phospholipase A2 activity in atherosclerotic plaque[J]. Atherosclerosis,2017,267:78-89.
[35].Hultman K,Edsfeldt A,Bj?rkbacka H, et al. Cartilage oligomeric matrix protein associates with a vulnerable plaque phenotype in human atherosclerotic plaques[J]. Stroke,2019,50(11):3289-3292.
[36].Zhou SJ,Liu S,Liu XQ,et al. Bioinformatics gene analysis of potential biomarkers and therapeutic targets for unstable atherosclerotic plaque-related stroke[J]. J Mol Neurosci,2020,71(5):1031-1045.
[37].Filipeka A,Czerwinska ME,Kiss,AK,et al. Oleacein enhances anti-inflammatory activity of human macrophages by increasing CD163 receptor expression[J]. Phytomedicine,2015,22(14):1255-1261.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(12):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(12):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(12):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(12):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(12):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(12):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(12):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(12):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(12):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(12):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
[11]王卫卫 于子凯.糖酵解调控巨噬细胞极化及其在动脉粥样硬化病理过程中的作用[J].心血管病学进展,2022,(4):318.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.008]
 WANG Weiwei,YU Zikai.Glycolytic Modulation of Macrophage Polarization and Its Role in the Pathological Process of Atherosclerosis[J].Advances in Cardiovascular Diseases,2022,(12):318.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.008]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81672084)
通信作者:关秀茹,E-mail: gxr0451@sina.com
更新日期/Last Update: 2022-01-07