参考文献/References:
[1].Xu HL,Jiang XJ,Chen WZ,et al. Vascular macrophages in atherosclerosis[J]. J Immunol Res,2019,2019:4354786.
[2].Yang S,Yuan HQ,Hao YM,et al. Macrophage polarization in atherosclerosis[J]. Clin Chim Acta,2020,501:142-146.
[3].Barrett TJ. Macrophages in atherosclerosis regression[J]. Arterioscler Thromb Vasc Biol,2020,40(1):20-33.
[4].Domschke G,Gleissner CA. CXCL4-induced macrophages in human atherosclerosis[J]. Cytokine,2019,122:154141.
[5].Serbulea V,DeWeese D,Leitinger N. The effect of oxidized phospholipids on phenotypic polarization and function of macrophages[J]. Free Radic Biol Med,2017,111:156-168.
[6].Boyle JJ, Harrington HA, Piper E,et al. Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype[J]. Am J Pathol,2009,174(3):1097-108.
[7].Luo Y,Lu S,Gao Y, et al. Araloside C attenuates atherosclerosis by modulating macrophage polarization via Sirt1-mediated autophagy[J]. Aging 2020,12(2):1704-1724.
[8].Guo L,Harari E,Virmani R,et al. Linking hemorrhage, angiogenesis, macrophages, and iron metabolism in atherosclerotic vascular diseases[J]. Arterioscler Thromb Vasc Biol,2017,37(4):e33-e39.
[9].Boyle JJ. Heme and haemoglobin direct macrophage Mhem phenotype and counter foam cell formation in areas of intraplaque haemorrhage[J]. Curr Opin Lipidol,2012,23(5):453-461.
[10].Finn AV,Nakano M,Polavarapu R,et al. Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques[J]. J Am Coll Cardiol,2012,59(2):166-177.
[11].Liu J,Yang BW,Wang YT et al. Polychlorinated biphenyl quinone promotes macrophage polarization to CD163(+) cells through Nrf2 signaling pathway[J]. Environ Pollut,2020,257:113587.
[12].Mollera HJ,Nielsenb MJ,Manieckia MB,et al. Soluble macrophage-derived CD163: a homogenous ectodomain protein with a dissociable haptoglobin-hemoglobin binding[J]. Immunobiology,2010,215(5):406-412.
[13].Law SK,Micklem KJ,Shaw JM,et al. A new macrophage differentiation antigen which is a member of the scavenger receptor superfamily[J]. Eur J Immunol,1993,23(9):2320-2305.
[14].Kristiansen M,Graversen JH,Jacobsen C,et al. Identification of the haemoglobin scavenger receptor[J]. Nature,2001,409(6817):198-201.
[15].van Gorp H,Delputte PL,Nauwynck HJ,et al. Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy[J]. Mol Immunol,2010,47(7-8):1650-1660.
[16].Puig N,Jiménez-Xarrié E3,Camps-Renom P,et al. Search for reliable circulating biomarkers to predict carotid plaque vulnerability[J]. Int J Mol Sci,2020,21(21):8236.
[17].Michel JB,Martin-Ventura LJ,Nicoletti A,et.al. Pathology of human plaque vulnerability: Mechanisms and consequences of intraplaque haemorrhages[J]. Atherosclerosis,2014,234(2):311-319.
[18].Michel JB,Martin-Ventura JL. Red blood cells and hemoglobin in human atherosclerosis and related arterial diseases[J]. Int J Mol Sci,2020,21(18):6756.
[19].Boyle JJ,Johns M,Kampfer T,et al. Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection[J]. Circ Res,2012,110(1):20-33.
[20].Bengtsson E,Hultman K,Edsfeldt A,et al. CD163+ macrophages are associated with a vulnerable plaque phenotype in human carotid plaques[J]. Sci Rep,2020,10(1):14362.
[21].Tabas I,Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis[J]. Circ Res,2016,118(4):653-667.
[22].Seneviratne A,Han Y,Wong E,et al. Hematoma resolution in vivo is directed by activating transcription factor 1[J]. Circ Res,2020,127(7):928-944.
[23].Gutierrez-Munoz C,Mendez-Barbero N,Svendsen P,et al. CD163 deficiency increases foam cell formation and plaque progression in atherosclerotic mice[J]. FASEB J,2020,34(11):14960-14976.
[24].Fischer-Riepe L,Daber N,Schulte-Schrepping J,et al. CD163 expression defines specific, IRF8-dependent, immune-modulatory macrophages in the bone marrow[J]. J Allergy Clin Immunol,2020,146(5):1137-1151.
[25].Liu H,Lin D,Xiang H,et al. The role of tumor necrosis factor-like weak inducer of apoptosis in atherosclerosis via its two different receptors[J]. Exp Ther Med,2017,14(2):891-897.
[26].Akahori H,Karmali V,Polavarapu R,et al. CD163 interacts with TWEAK to regulate tissue regeneration after ischaemic injury[J]. Nat Commun,2015,6:7792.
[27].Aristoteli LP,Mollerb HJ,Baileyd B,et al. The monocytic lineage specific soluble CD163 is a plasma marker of coronary atherosclerosis[J]. Atherosclerosis,2006,184(2):342-347.
[28].David C,Divard G,Abbas R,et al. Soluble CD163 is a biomarker for accelerated atherosclerosis in systemic lupus erythematosus patients at apparent low risk for cardiovascular disease[J]. Scand J Rheumatol,2020,49(1):33-37.
[29].Skytthe MK, Graversen HJ,Moestrup SK. Targeting of CD163(+) Macrophages in Inflammatory and Malignant Diseases[J]. Int J Mol Sci,2020,21(15):5497.
[30].Roy-O’Reilly M, Zhu L,Atadja L,et al. Soluble CD163 in intracerebral hemorrhage: biomarker for perihematomal edema[J]. Ann Clin Transl Neurol,2017,4(11):793-800.
[31].Graversen JH,Moestrup SK. Drug Trafficking into macrophages via the endocytotic receptor CD163[J]. Membranes (Basel),2015,5(2):228-252.
[32].Svendsen P,Graversen JH,Etzerodt A,et al.Antibody-directed glucocorticoid targeting to CD163 in M2-type macrophages attenuates fructose-induced liver inflammatory changes[J]. Mol Ther Methods Clin Dev,2017,4:50-61.
[33].Guo L,Akahori H,Harari E,et al.CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis[J]. J Clin Invest,2018,128(3):1106-1124.
[34].Otsuka F,Zhao XQ,Trout HH,et al. Community-based statins and advanced carotid plaque: role of CD163 positive macrophages in lipoprotein-associated phospholipase A2 activity in atherosclerotic plaque[J]. Atherosclerosis,2017,267:78-89.
[35].Hultman K,Edsfeldt A,Bj?rkbacka H, et al. Cartilage oligomeric matrix protein associates with a vulnerable plaque phenotype in human atherosclerotic plaques[J]. Stroke,2019,50(11):3289-3292.
[36].Zhou SJ,Liu S,Liu XQ,et al. Bioinformatics gene analysis of potential biomarkers and therapeutic targets for unstable atherosclerotic plaque-related stroke[J]. J Mol Neurosci,2020,71(5):1031-1045.
[37].Filipeka A,Czerwinska ME,Kiss,AK,et al. Oleacein enhances anti-inflammatory activity of human macrophages by increasing CD163 receptor expression[J]. Phytomedicine,2015,22(14):1255-1261.
相似文献/References:
[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(12):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(12):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(12):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(12):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(12):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(12):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(12):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(12):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(12):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(12):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
[11]王卫卫 于子凯.糖酵解调控巨噬细胞极化及其在动脉粥样硬化病理过程中的作用[J].心血管病学进展,2022,(4):318.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.008]
WANG Weiwei,YU Zikai.Glycolytic Modulation of Macrophage Polarization and Its Role in the Pathological Process of Atherosclerosis[J].Advances in Cardiovascular Diseases,2022,(12):318.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.008]