参考文献/References:
[1]Libby P. Inflammation in atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2012,32(9):2045-2051.
[2]Morrell CN,Pariser DN,Hilt ZT,et al. The platelet napoleon complex-small cells,but big immune regulatory functions[J]. Annu Rev Immunol,2019,37:125-144.
[3]Lievens D,von Hundelshausen P. Platelets in atherosclerosis[J]. Thromb Haemost,2011,106(5):827-838.
[4]Gawaz M,Langer H,May AE. Platelets in inflammation and atherogenesis[J]. J Clin Invest,2005,115(12):3378-3384.
[5]Burger PC,Wagner DD. Platelet P-selectin facilitates atherosclerotic lesion development[J]. Blood,2003,101(7):2661-2666.
[6]Zhang N,Liu Z,Yao L,et al. P-selectin expressed by a human SELP transgene is atherogenic in apolipoprotein E-deficient mice[J]. Arterioscler Thromb Vasc Biol,2016,36(6):1114-1121.
[7]Linden MD,Jackson DE. Platelets:pleiotropic roles in atherogenesis and atherothrombosis[J]. Int J Biochem Cell Biol,2010,42(11):1762-1766.
[8]Huo Y,Schober A,Forlow SB,et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E[J]. Nat Med,2003,9(1):61-67.
[9]Dann R,Hadi T,Montenont E,et al. Platelet-derived MRP-14 induces monocyte activation in patients with symptomatic peripheral artery disease[J]. J Am Coll Cardiol,2018,71(1):53-65.
[10]Merten M,Thiagarajan P. P-selectin expression on platelets determines size and stability of platelet aggregates[J]. Circulation,2000,102(16):1931-1936.
[11]Blann AD,Nadar SK,Lip GY. The adhesion molecule P-select and cardiovascular disease[J]. Eur Heart J,2003,24(24):2166-2179.
[12]Moschonas IC,Tselepis AD. The pathway of neutrophil extracellular traps towards atherosclerosis and thrombosis[J]. Atherosclerosis,2019,288:9-16.
[13]Etulain J,Martinod K,Wong SL,et al. P-select in promotes neutrophil extracellular trap formation in mice[J]. Blood,2015,126(2):242-246.
[14]Hassan GS,Merhi Y,Mourad W. CD40 ligand:a neo-inflammatory molecule in vascular diseases[J]. Immunobiology,2012,217(5):521-532.
[15]Antoniades C,Bakogiannis C,Tousoulis D,et al. The CD40/CD40 ligand system:linking inflammation with atherothrombosis[J]. J Am Coll Cardiol,2009,54(8):669-677.
[16]Lutgens E,Lievens D,Beckers L,et al. Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile[J]. J Exp Med,2010,207(2):391-404.
[17]Lameijer M,Binderup T,van Leent MMT,et al. Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates[J]. Nat Biomed Eng,2018,2(5):279-292.
[18]Missiou A,Rudolf P,Stachon P,et al. TRAF5 deficiency accelerates atherogenesis in mice by increasing inflammatory cell recruitment and foam cell formation[J]. Circ Res,2010,107(6):757-766.
[19]Zirlik A,Maier C,Gerdes N,et al. CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1[J]. Circulation,2007,115(12):1571-1580.
[20]Wolf D,Hohmann JD,Wiedemann A,et al. Binding of CD40L to Mac-1’s I-domain involves the EQLKKSKTL motif and mediates leukocyte recruitment and atherosclerosis—But does not affect immunity and thrombosis in mice[J]. Circ Res,2011,109(11):1269-1279.
[21]Lievens D,Zernecke A,Seijkens T,et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis[J]. Blood,2010,116(20):4317-4327.
[22]Gerdes N,Seijkens T,Lievens D,et al. Platelet CD40 exacerbates atherosclerosis by transcellular activation of endothelial cells and leukocytes[J]. Arterioscler Thromb Vasc Biol,2016,36(3):482-490.
[23]Jin R,Xiao AY,Song Z,et al. Platelet CD40 mediates leukocyte recruitment and neointima formation after arterial denudation injury in atherosclerosis-prone mice[J]. Am J Pathol,2018,188(1):252-263.
[24]Inwald DP,McDowall A,Peters MJ,et al. CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation[J]. Circ Res,2003,92(9):1041-1048.
[25]Yacoub D,Hachem A,Théorêt JF,et al. Enhanced levels of soluble CD40 ligand exacerbate platelet aggregation and thrombus formation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway[J]. Arterioscler Thromb Vasc Biol,2010,30(12):2424-2433.
[26]Kojok K,Akoum SE,Mohsen M,et al. CD40L priming of platelets via NF-κB activation is CD40- and TAK1-dependent[J]. J Am Heart Assoc,2018,7(23):e03677.
[27]André P,Prasad KS,Denis CV,et al. CD40L stabilizes arterial thrombi by a beta3 integrin—Dependent mechanism[J]. Nat Med,2002,8(3):247-252.
[28]Kuijpers MJ,Mattheij NJ,Cipolla L,et al. Platelet CD40L modulates thrombus growth via phosphatidylinositol 3-Kinase β,and not via CD40 and IκB kinase α[J]. Arterioscler Thromb Vasc Biol,2015,35(6):1374-1381.
[29]Simic D,Bogdan N,Teng F,et al. Blocking α5β1 integrin attenuates sCD40L-mediated platelet activation[J]. Clin Appl Thromb Hemost,2017,23(6):607-614.
[30]Takada YK,Yu J,Shimoda M,et al. Integrin binding to the trimeric interface of CD40L plays a critical role in CD40/CD40L signaling[J]. J Immunol,2019,203(5):1383-1391.
[31]Golukhova EZ,Grigoryan MV,Ryabinina MN,et al. Body mass index and plasma P-selectin before coronary stenting predict high residual platelet reactivity at 6 months on dual antiplatelet therapy[J]. Cardiology,2018,139(2):132-136.
[32]Aradi D,Kirtane A,Bonello L,et al. Bleeding and stent thrombosis on P2Y12-inhibitors:collaborative analysis on the role of platelet reactivity for risk stratification after percutaneous coronary intervention[J]. Eur Heart J,2015,36(27):1762-1771.
[33]Tousoulis D,Androulakis E,Papageorgiou N,et al. From atherosclerosis to acute coronary syndromes:the role of soluble CD40 ligand[J]. Trends Cardiovasc Med,2010,20(5):153-164.
[34]Aslan G,Polat V,Bozcali E,et al. Evaluation of serum sST2 and sCD40L values in patients with microvascular angina[J]. Microvasc Res,2019,122:85-93.
[35]Gergei I,K?lsch Tn,Scharnagl H,et al. Association of soluble CD40L with short-term and long-term cardiovascular and all-cause mortality:the Ludwigshafen Risk and Cardiovascular Health (LURIC) study[J]. Atherosclerosis,2019,291:127-131.
[36]St?hli BE,Gebhard C,Duchatelle V,et al. Effects of the P-Selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention according to timing of infusion:insights from the SELECT-ACS trial[J]. J Am Heart Assoc,2016,5(11):e004255.
[37]Davizon-Castillo P,McMahon B,Aguila S,et al. TNF-α-driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of aging[J]. Blood,2019,134(9):727-740.
相似文献/References:
[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(10):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(10):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(10):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(10):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(10):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[6]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(10):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[7]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(10):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[8]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(10):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[9]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(10):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
[10]林春尧 刘晓辉.IL-33/ST2在冠心病中的研究进展[J].心血管病学进展,2020,(2):128.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.007]
LIN Chunyao LIU Xiaohui.IL-33/ST2 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2020,(10):128.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.007]
[11]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(10):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[12]肖明瑛 苏冠华.PCSK9抑制剂多效性研究进展[J].心血管病学进展,2022,(2):124.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.008]
XIAO MingyingSU Guanhua.Pleiotropic Effects of PCSK9 Inhibitors[J].Advances in Cardiovascular Diseases,2022,(10):124.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.008]