[1]向杰 张伟 马亚哲 黄从新.心房颤动患者发生脑梗死的风险预测模型[J].心血管病学进展,2020,(12):1315-1323.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.022]
 XIANG Jie,ZHANG wei,MA Yazhe,et al.Risk Prediction Model for Cerebral Infarction in Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2020,(12):1315-1323.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.022]
点击复制

心房颤动患者发生脑梗死的风险预测模型()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年12期
页码:
1315-1323
栏目:
综述
出版日期:
2020-12-25

文章信息/Info

Title:
Risk Prediction Model for Cerebral Infarction in Patients with Atrial Fibrillation
作者:
向杰 张伟 马亚哲 黄从新
(武汉大学人民医院心血管研究所,湖北 武汉 430060)
Author(s):
XIANG JieZHANG weiMA YazheHUANG Congxin
(Institute of Cardiovascular Research,Renmin Hospital of Wuhan University,Wuhan 430060,Hubei,China)
关键词:
心房颤动脑梗死风险预测模型列线图
Keywords:
Atrial fibrillationCerebral infarctionRisk prediction modelNomogram
DOI:
10.16806/j.cnki.issn.1004-3934.2020.12.022
摘要:
目的 通过病例对照研究来开发和内部验证心房颤动患者发生脑梗死的风险模型图。方法 收集2019年6月2019年12月于武汉大学人民医院心内科住院治疗的268心房颤动患者(其中56有脑梗死)的临床资料,基于这些患者的52项临床数据开发一种预测模型。以LASSO回归模型用于优化脑梗死发生风险模型的特征选择。应用多变量logistic回归分析来建立预测模型,该模型结合了在LASSO回归模型中选择的特征并使用C指数,校正图和决策曲线分析评估了预测模型的区别,校准和临床实用性同时使用自举验证评估内部验证。结果 预测列线图中包含的预测变量包括血小板抑制剂、甘油三酯、直接胆红素、纤维蛋白、左房内径、抗凝剂、国际标准化比值、低密度脂蛋白、高血压、脑钠肽、高密度脂蛋白射血分数。该模型显示出良好的辨别能力和良好的校准,其C指数为0.778 765 2,在内部验证中仍可达到0.718 117 5的C指数值。决策曲线分析表明,在将脑梗死发生可能性阈值确定为1%的情况下进行干预时,脑梗死风险列线图对临床是有用的。结论 这种新颖的预测模型结合患者的基本临床数据,可以方便临床工作中对房颤患者发生脑梗死的风险预测,从而为患者制定更优的治疗方案。
Abstract:
ObjectiveTo develop and internally validate a risk model for cerebral infarction in patients with atrial fibrillation. Methods Data of 268 patients with atrial fibrillation admitted to department of cardiology in Renmin Hospital of Wuhan University from June 2019 to December 2019 were collected,of whom 56 cases had cerebral infarction. A prediction model based on 52 clinical data of these patients was developed. LASSO regression model was used to optimize the feature selection of risk model for cerebral infarction and multivariate logistic regression analysis to build prediction model,which combined the feature selected in LASSO regression model. Differences between prediction models,the calibration and clinical practicality were evaluated by C index,correction chart and decision curve analysis. Meanwhile,internal verification was assessed with bootstrap verification. Results The predictive variables included in prediction nomogram consist of platelet inhibitors,triglyceride,direct bilirubin,fibrin,left atrium inner diameter,anticoagulant,international standardized ratio,low density lipoprotein,hypertension,brain natriuretic peptide,high density lipoprotein and left ventricular ejection fraction. The model showed a good discriminating and calibrating power with C index of 0.778 765 2,which could still reach 0.718 117 5 in internal verification. Results of decision curve analysis showed when interventions were carried out at 1% threshold of morbidity for cerebral infarction,it was clinically useful to utilize risk histogram of cerebral infarction. Conclusion This novel prediction model integrating basic clinical data of patients facilitates risk predictions for cerebral infarction in patients with atrial fibrillation,which may help to formulate better therapeutic plans for patients.

参考文献/References:

[1] Malladi VNaeini PS,Razavi M,et al. Endovascular ablation of atrial fibrillation[J]. Anesthesiology,2014,120(6):1513-1519.
[2] 李延广时向民林琨等.心房颤动血栓形成机制研究进展[J].心血管病学进展2015,36(6):691-695.
[3] Kishore A,Vail A,Majid A,et al. Detection of atrial fibrillation after ischemic stroke or transient ischemic attack: a systematic review and meta-analysis[J]. Stroke,2014,45(2):520-526.
[4] Safavi-Naeini P,Razavi M,Saeed M,et al. A review of the LARIAT suture delivery device for left atrial appendage closure[J]. J Tehran Heart Cent,2015,10(2):69-73.
[5] Sharma M,Khalighi K. Non-pharmacologic approach to prevent embolization in patients with atrial fibrillation in whom anticoagulation is contraindicated[J]. Clin Pract,2017,7(1):898.
[6] Menke J,Luthje L,Kastrup A,et al. Thromboembolism in atrial fibrillation[J]. Am J Cardiol,2010,105(4):502-510.
[7] Ding WY,Harrison S,Gupta D,et al. Stroke and bleeding risk assessments in patients with atrial fibrillation:concepts and controversies[J]. Front Med (Lausanne),2020,7:54.
[8] 黄从新张澍黄德嘉.心房颤动:目前的认识和治疗的建议-2018[J].中国心脏起搏与心电生理杂志2018,32(4):315-368.
[9] 中华医学会神经病学分会中华医学会神经病学分会脑血管病学组.中国急性缺血性脑卒中诊治指南2018[J].中华神经科杂志2018,51(9):666-682.
[10] Iasonos A,Schrag D,Raj GV,et al. How to build and interpret a nomogram for cancer prognosis[J]. J Clin Oncol,2008,26(8):1364-1370.
[11] Kramer AA,Zimmerman JE. Assessing the calibration of mortality benchmarks in critical care: The Hosmer-Lemeshow test revisited[J]. Crit Care Med,2007,35(9):2052-2056.
[12] Pencina MJ,D’Agostino RB. Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation[J]. Stat Med,2004,23(13):2109-2123.
[13] Huang YQ,Liang CH,He L,et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer[J]. J Clin Oncol,2016,34(18):2157-2164.
[14] Kamel H,Okin PM,Elkind MS,et al. Atrial fibrillation and mechanisms of stroke: time for a new model[J]. Stroke,2016,47(3):895-900.
[15] Hahne K,Monnig G,Samol A. Atrial fibrillation and silent stroke: links,risks,and challenges[J]. Vasc Health Risk Manag,2016,12:65-74.
[16] Samol A,Masin M,Gellner R,et al. Prevalence of unknown atrial fibrillation in patients with risk factors[J]. Europace,2013,15(5):657-662.
[17] Wei L,Champman S,Li X,et al. Beliefs about medicines and non-adherence in patients with stroke,diabetes mellitus and rheumatoid arthritis: a cross-sectional study in China[J]. BMJ Open,2017,7(10):e17293.
[18] Lansberg MG,O’Donnell MJ,Khatri P,et al. Antithrombotic and thrombolytic therapy for ischemic stroke: Antithrombotic Therapy and Prevention of Thrombosis,9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines[J]. Chest,2012,141(2 suppl):e601S-e636S.
[19] Psaty BM,Manolio TA,Kuller LH,et al. Incidence of and risk factors for atrial fibrillation in older adults[J]. Circulation,1997,96(7):2455-2461.
[20] Adabag AS,Nelson DB,Bloomfield HE. Effects of statin therapy on preventing atrial fibrillation in coronary disease and heart failure[J]. Am Heart J,2007,154(6):1140-1145.
[21] Independent predictors of stroke in patients with atrial fibrillation: a systematic review[J]. Neurology,2007,69(6):546-554.
[22] Comparison of 12 risk stratification schemes to predict stroke in patients with nonvalvular atrial fibrillation[J]. Stroke,2008,39(6):1901-1910.
[23] Altman DG,Royston P. What do we mean by validating a prognostic model?[J]. Stat Med,2000,19(4):453-473.

相似文献/References:

[1]贺鹏康,周菁.心房颤动治疗新技术——冷冻球囊消融[J].心血管病学进展,2016,(1):1.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.001]
 HE Pengkang,ZHOU Jing.Cryoballoon Ablation, A Novel Technology for Atrial Fibrillation Treatment[J].Advances in Cardiovascular Diseases,2016,(12):1.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.001]
[2]都明辉,施海峰*,佟佳宾,等.心房颤动消融相关性无症状性脑缺血[J].心血管病学进展,2016,(1):3.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.002]
 DU Minghui,SHI Haifeng*,TONG Jiabin,et al.Silent Cerebral Ischemia Related to Atrial Fibrillation Ablation[J].Advances in Cardiovascular Diseases,2016,(12):3.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.002]
[3]郑环杰,综述,肖骅,等.心房颤动抗栓治疗研究进展[J].心血管病学进展,2016,(2):142.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.012]
 ZHENG Huanjie,XIAO Hua.Progress of Antithrombotic Therapy in Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(12):142.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.012]
[4]张清,综述,罗素新,等.新型Xa 因子抑制剂———依度沙班在心房颤动患者抗凝治疗中的研究进展[J].心血管病学进展,2016,(2):151.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.014]
 ZHANG Qing,LUO Suxin,TANG Jiong.Novel Factor Xa Inhibitors—Edoxaban in Prevention of Stroke in Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(12):151.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.014]
[5]胡红玲,综述,罗素新,等.预防非瓣膜性心房颤动性脑卒中的治疗新进展[J].心血管病学进展,2016,(3):250.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.009]
 HU Hongling,LUO Suxin.New Progress in the Treatment for Cerebral Apoplexy of Nonvalvular Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(12):250.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.009]
[6]王超,杨国澍,综述,等.关附甲素治疗心房颤动的研究进展[J].心血管病学进展,2016,(3):254.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.010]
 WANG Chao,YANG Guoshu,CAI Lin,et al.Research Progress of the Treatment of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(12):254.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.010]
[7]徐小东,综述,杨东辉,等.决奈达隆治疗心房颤动的现状及展望[J].心血管病学进展,2016,(4):368.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.011]
 XU Xiaodong,YANG Donghui.Status and Prospect of Dronedarone in Treating Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(12):368.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.011]
[8]张莎,储国俊,吴弘.经导管左心耳封堵术的临床应用进展[J].心血管病学进展,2015,(5):547.[doi:10.3969/j.issn.1004-3934.2015.05.006]
 ZHANG Sha,CHU Guojun,WU Hong.Clinial Application Advances in Left Atrial Appendage Closure[J].Advances in Cardiovascular Diseases,2015,(12):547.[doi:10.3969/j.issn.1004-3934.2015.05.006]
[9]汪俊,杨浩.心房颤动射频消融的术式演变[J].心血管病学进展,2015,(5):574.[doi:10.3969/j.issn.1004-3934.2015.05.013]
 WANG Jun,YANG Hao.Evolution of Radiofrequency Ablation of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2015,(12):574.[doi:10.3969/j.issn.1004-3934.2015.05.013]
[10]赵璐,苏立.心房颤动与离子通道重构研究进展[J].心血管病学进展,2015,(5):580.[doi:10.3969/j.issn.1004-3934.2015.05.014]
 ZHAO Lu,SU Li.Research Progress of Atrial Fibrillation and Ion Channel Remodeling[J].Advances in Cardiovascular Diseases,2015,(12):580.[doi:10.3969/j.issn.1004-3934.2015.05.014]

备注/Memo

备注/Memo:
通讯作者:黄从新,E-mail:huangcongxin@vip.com
收稿日期:2020-07-14
更新日期/Last Update: 2021-02-22