[1]于博文 修成奎 王雪 杨静 雷燕.内皮微粒在临床中的研究进展及应用[J].心血管病学进展,2021,(1):76-80.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 YU Bowen,XIU Chengkui,WANG Xue,et al.Research Progress and Application of Endothelial Microparticles in Clinic[J].Advances in Cardiovascular Diseases,2021,(1):76-80.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
点击复制

内皮微粒在临床中的研究进展及应用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年1期
页码:
76-80
栏目:
综述
出版日期:
2021-01-25

文章信息/Info

Title:
Research Progress and Application of Endothelial Microparticles in Clinic
文章编号:
202005116
作者:
于博文12 修成奎1 王雪1 杨静1 雷燕1
(中国中医科学院医学实验中心 北京市中医药防治重大疾病基础研究重点实验室,北京 100700;2. 中国中医科学院博士后科研流动站,北京 100700)
Author(s):
YU Bowen12XIU Chengkui1WANG Xue1YANG Jing1LEI Yan1
Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases,Medical Experiment Center,China Academy of Chinese Medical Sciences, Beijing 100700,China; 2.Center for Post-doctoral Studies,China Academy of Chinese Medical Sciences,Beijing 100700,China)
关键词:
内皮微粒内皮功能障碍生物标志物血管健康
Keywords:
Endothelial microparticlesEndothelial dysfunctionBiomarker Vascular health
DOI:
10.16806/j.cnki.issn.1004-3934.2021.01.000
摘要:
内皮微粒是从激活或损伤的内皮细胞上脱落的微小囊泡,是一种新的细胞间通讯方式,在炎症反应、凝血反应和血管生成等方面发挥重要作用,可作为内皮功能障碍和血管健康的生物标志物,并且与多种疾病密切相关。但目前对内皮微粒分子机制的理解还不够深入,在其临床研究及检测方法上存在局限性,无法人为调控内皮微粒的释放,这给以内皮微粒为疾病靶标的转化医学研究带来了挑战。现主要从内皮微粒的概念、病理生理功能、临床应用、检测方法以及在临床研究中存在的问题等方面的研究进展进行综述。
Abstract:
Endothelial microparticles(EMP) are small vesicles that released from activated or damaged endothelial cells. EMP are regard as a new way of intercellular communication and play an important role in inflammatory response,coagulation response and angiogenesis. Besides,EMP are biomarkers of endothelial dysfunction and vascular health,and are closely related to a variety of diseases. However,our understanding of the molecular mechanism of EMP is not deep enough. There are limitations in clinical research, detection methods and the regulation of EMP release have brought challenges to the research of translational medicine which takes EMP as disease targets. This paper review s the research progress in the field of EMP from the concept,pathophysiological function,clinical application,detection methods and existing problems in clinical research.

参考文献/References:




[1] Ramis JM. Extracellular vesicles in cell biology and medicine[J]. Sci Rep,2020,10(1):8667.

[2] Wolf P. The nature and significance of platelet products in human plasma[J]. Br J Haematol,1967,13(3):269-288.

[3] Combes V,Simon AC,Grau GE,et al. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant[J]. J Clin Invest,1999,104(1):93-102.

[4] Fernández M,Calligaris SD. Circulating microparticles in cardiovascular disease:going on stage![J]. Biomarkers,2019,24(5):423-428.

[5] Deng F,Wang S,Zhang L. Endothelial microparticles act as novel diagnostic and therapeutic biomarkers of diabetes and its complications:a literature review[J]. Biomed Res Int,2016,2016:9802026.

[6] Rautou PE,Vion AC,Amabile N,et al. Microparticles,vascular function,and atherothrombosis[J]. Circ Res,2011,109(5):593-606.

[7] Zhou H,Shi WX,Zhou BC,et al. Tissue factor-factor Ⅶa regulates interleukin-8,tissue factor and caspase-7 expression in SW620 cells through protease-activated receptor-2 activation[J]. Mol Med Rep,2010,3(2):269-274.

[8] Yun JW,Barzegar M,Boyer CJ,et al. Brain endothelial cells release apical and basolateral microparticles in response to inflammatory cytokine stimulation:relevance to neuroinflammatory stress?[J]. Front Immunol,2019,10:1455.

[9] Weisshaar S,Gouya G,Nguyen D,et al. The LPS-induced increase in circulating microparticles is not affected by vitamin C in humans[J]. Eur J Clin Invest,2013,43(7):708-715.

[10] Safiedeen Z,Rodriguez-Gomez I,Vergori L,et al. Temporal cross talk between endoplasmic reticulum and mitochondria regulates oxidative stress and mediates microparticle-induced endothelial dysfunction[J]. Antioxid Redox Signal,2017,26(1):15-27.

[11] Yamaguchi R,Sakamoto A,Yamaguchi R,et al. Di-(2-Ethylhexyl) phthalate promotes release of tissue factor-bearing microparticles from macrophages via the TGFβ1/Smad/PAI-1 signaling pathway[J]. Am J Med Sci,2019,357(6):492-506.

[12] Sapet C,Simoncini S,Loriod B,et al. Thrombin-induced endothelial microparticle generation:identification of a novel pathway involving ROCK-Ⅱ activation by caspase-2 [J]. Blood,2006,108(6):1868-1876.

[13] Faulkner LG,Alqarni S,Maraveyas A,et al. Isolated tumour microparticles induce endothelial microparticle release in vitro[J]. Blood Coagul Fibrinolysis,2020,31(1):35-42.

[14] Neuber C,Pufe J,Pietzsch J. Influence of irradiation on release of endothelial microparticles (EMP) in vitro[J]. Clin Hemorheol Microcirc,2015,61(2):291-299.

[15] Kim JS,Kim B,Lee H,et al. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells[J]. Am J Physiol Heart Circ Physiol,2015,309(3):H425-433.

[16] Kobayashi T,Menon AK. Transbilayer lipid asymmetry[J]. Curr Biol,2018,28(8):R386-R391.

[17] Nieri D,Neri T,Petrini S,et al. Cell-derived microparticles and the lung[J]. Eur Respir Rev,2016,25(141):266-277.

[18] Montigny C,Lyons J,Champeil P,et al. On the molecular mechanism of flippase-and scramblase-mediated phospholipid transport[J]. Biochim Biophys Acta,2016,1861(8 Pt B):767-783.

[19] Yu XH,Xu JJ,Liu WW,et al. Bubbles induce endothelial microparticle formation via a calcium-dependent pathway involving flippase inactivation and Rho kinase activation[J]. Cell Physiol Biochem,2018,46(3):965-974.

[20] Ryu JH,Kim SJ. Clopidogrel effectively suppresses endothelial microparticle generation induced by indoxyl sulfate via inhibition of the p38 mitogen-activated protein kinase pathway[J]. Blood Purif,2011,32(3):186-194.

[21] Deng F,W ang S,Z hang LQ . Endothelial microparticles act as novel diagnostic and therapeutic biomarkers of circulatory hypoxia-related diseases:a literature review[J]. J Cell Mol Med,2017,21(9):1698- 1710.

[22] Majka M,Kijowski J,Lesko E,et al. Evidence that platelet-derived microvesicles may transfer platelet-specific immunoreactive antigens to the surface of endothelial cells and CD34+ hematopoietic stem/progenitor cells-implication for the pathogenesis of immune thrombocytopenias[J]. Folia Histochem Cytobiol,2007,45(1):27-32.

[23] Wang Y,Liu J,Chen X,et al. Dysfunctional endothelial-derived microparticles promote inflammatory macrophage formation via NF-κB and IL-1 β signal pathways[J]. J Cell Mol Med,2019,23(1):476-486.

[24] Barbati C,Vomero M,Colasanti T,et al. Microparticles and autophagy:a new frontier in the understanding of atherosclerosis in rheumatoid arthritis [J]. Immunol Res,2018,66(6):655-662.

[25] Jansen F,Yang X,Baumann K,et al. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism[J]. J Cell Mol Med,2015,19(9):2202-2214.

[26] Curti AM,Wilkinson PF,Gui M,et al. p38 mitogen-activated protein kinase targets the production of proinflammatory endothelial microparticles[J]. J Thromb Haemost,2009,7(4):701-709.

[27] Lacroix R,Sabatier F,Mialhe A,et al. Activation of plasminogen into plasmin at the surface of endothelial microparticles:a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro[J]. Blood,2007,110(7):2432-2439.

[28] Sabatier F,Roux V,Anfosso F,et al. Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity[J]. Blood,2002,99(11):3962-3970.

[29] Del Conde I,Shrimpton CN,Thiagarajan P,et al. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation[J]. Blood,2005,106(5):1604-1611.

[30] Todiras M,Alenina N,Bader M. Evaluation of endothelial dysfunction in vivo[J]. Methods Mol Biol,2017,1527:355-367.

[31] Werner N,Wassmann S,Ahlers P,et al. Circulating CD31+/annexin V+ apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease[J]. Arterioscler Thromb Vasc Biol,2006,26(1):112-116.

[32] Heiss C,Amabile N,Lee AC,et al. Brief secondhand smoke exposure depresses endothelial progenitor cells activity and endothelial function:sustained vascular injury and blunted nitric oxide production[J]. J Am Coll Cardiol,2008,51(18):1760-1771.

[33] Condorelli RA,Calogero AE,la Vignera S. The importance of the functional network between endothelial microparticles and late endothelial progenitor cells for understanding the physiological aspects of this new vascular repair system[J]. Acta Physiol (Oxf),2018,222:e12931.

[34] Vítková V,Zivn ? J,Janota J. Endothelial cell-derived microvesicles:potential mediators and biomarkers of pathologic processes[J]. Biomark Med,2018,12(2):161-175.

[35] Nozaki T,Sugiyama S,Sugamura K,et al. Prognostic value of endothelial microparticles in patients with heart failure[J]. Eur J Heart Fail,2010,12(11):1223-1228.

[36] Chiva-Blanch G,Crespo J,Suades R,et al. CD142+/CD61+,CD146+ and CD45 + microparticles predict cardiovascular events in high risk patients following a Mediterranean diet supplemented with nuts[J]. Thromb Haemost,2016,116(1):103-114.

[37] Garre EG,Gil GL,García SM,et al. Circulating small-sized endothelial microparticles as predictors of clinical outcome after chemotherapy for breast cancer:an exploratory analysis[J]. Breast Cancer Res Treat,2018,169(1):83-92.

[38] Boulanger CM,Loyer X,Rautou PE,et al. Extracellular vesicles in coronary artery disease[J]. Nat Rev Cardiol,2017,14(5):259-272.

[39] Amabile N,Guérin AP,Tedgui A ,et al. Predictive value of circulating endothelial microparticles for cardiovascular mortality in end-stage renal failure:a pilot study[J]. Nephrol Dial Transplant,2012,27(5):1873-1880.

[40] Cheng F,Wang Y,Li J,et al. Berberine improves endothelial function by reducing endothelial microparticles-mediated oxidative stress in humans[J]. Int J Cardiol,2013,167(3):936-942.

[41] Pernomian L,Moreira JD,Gomes MS. In the view of endothelial microparticles:novel perspectives for diagnostic and pharmacological management of cardiovascular risk during diabetes distress[J]. J Diabetes Res,2018,2018:9685205.

[42] Yu Y,Jing LH,Zhang XY,et al. Simvastatin attenuates acute lung injury via regulating CDC42-PAK4 and endothelial microparticles[J]. Shock,2017,47(3):378-384.

[43] Francois ME,Myette-Cote E,Bammert TD,et al. Carbohydrate restriction with postmeal walking effectively mitigates postprandial hyperglycemia and improves endothelial function in type 2 diabetes[J]. Am J Physiol Heart Circ Physiol,2018,314(1):H105-H113.

[44] St?pień E, Kab?ak-Ziembicka A, Czy? J,et al. Microparticles,not only markers but also a therapeutic target in the early stage of diabetic retinopathy and vascular aging[J]. Expert Opin Ther Targets,2012,16(7):677-688.

[45] Berckmans RJ,Lacroix R,Hau CM,et al. Extracellular vesicles and coagulation in blood from healthy humans revisited[J]. J Extracell Vesicles,2019,8(1):1688936.

[46] Burnouf T,Chou ML,Goubran H,et al. An overview of the role of microparticles/microvesicles in blood components:are they clinically beneficial or harmful?[J]. Transfus Apher Sci,2015,53(2):137-145.

[47] Mahmoud AM,Wilkinson FL,Mccarthy EM,et al. Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress [J]. FASEB J,2017,31(10):4636-4648.

[48] Bodega G,Alique M,Bohórquez L,et al. Young and especially senescent endothelial microvesicles produce NADPH:the fuel for their antioxidant machinery[J]. Oxid Med Cell Longev,2018,2018:3183794.

[49] Todorova D,Simoncini S,Lacroix R,et al. Extracellular vesicles in angiogenesis[J]. Circ Res,2017,120(10):1658-1673.

[50] Mooberry MJ,Key NS. Microparticle analysis in disorders of hemostasis and thrombosis[J]. Cytometry A,2016,89(2):111-122.

[51] Ayers L,Kohler M,Harrison P,et al. Measurement of circulating cell-derived microparticles by flow cytometry:sources of variability within the assay[J]. Thromb Res,2011,127(4):370-377.

[52] Vila-Liante V,Sánchez-López V,Martínez-Sales V,et al. Impact of sample processing on the measurement of circulating microparticles:storage and centrifugation parameters[J]. Clin Chem Lab Med,2016,54(11):1759-1767.

相似文献/References:

[1]杜明亮 王泊然 惠慧 郑晓群.冠状动脉微循环功能障碍临床研究进展[J].心血管病学进展,2023,(8):699.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.007]
 DU Mingliang,WANG Boran,HUI Hui,et al.Clinical Research Progress of Coronary Microcirculation Dysfunction[J].Advances in Cardiovascular Diseases,2023,(1):699.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.007]
[2]付亚萌 张光明.内质网应激与内皮功能障碍关系及临床治疗研究进展[J].心血管病学进展,2024,(3):243.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.012]
 FU YamengZHANG Guangming.Research progress on the relationship between endoplasmic reticulum stress and endothelial dysfunction and its clinical treatment[J].Advances in Cardiovascular Diseases,2024,(1):243.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.012]
[3]张威 段高羊 郭瑶 唐明生 吴沣芝 蒋丰智.川崎病急性期中性粒细胞胞外诱捕网与血管损伤的相关研究[J].心血管病学进展,2024,(11):1046.[doi:10.16806/j.cnki.issn.1004-3934.2024.11.018]
 ZHANG Wei,DUAN Gaoyang,GUO Yao,et al.A Preliminary Study of the Involvement of Neutrophil Extracellular Traps on Vascular Injury in the Acute Phase of Kawasaki Disease[J].Advances in Cardiovascular Diseases,2024,(1):1046.[doi:10.16806/j.cnki.issn.1004-3934.2024.11.018]

更新日期/Last Update: 2021-03-18