参考文献/References:
[1] 高斯德,李卫萍,李虹伟. 钠-葡萄糖协同转运蛋白抑制剂与心力衰竭的研究进展[J]. 心血 管病学进展,2018,39(5):703-708.
[2] Nassif ME,Windsor S,Tang F,et al. Dapagliflozin effects on biomarkers, symptoms, and functional status in patients with heart failure with reduced ejection fraction:the DEFINE-HF trial[J]. Circulation,2019,140(18):1463-1476.
[3] Damman K,Kjekshus J,Wikstrand J,et al. Loop diuretics, renal function and clinical outcome in patients with heart failure and reduced ejection fraction[J]. Eur J Heart Fail,2016,18(3):328-836.
[4] di Franco A,Cantini G,Tani A,et al. Sodium-dependent glucose transporters(SGLT) in human ischemic heart:a new potential pharmacological target[J]. Int J Cardiol,2017,243:86-90.
[5] Connelly KA,Zhang Y,Desjardins JF,et al. Dual inhibition of sodium-glucose linked cotransporters 1 and 2 exacerbates cardiac dysfunction following experimental myocardial infarction[J]. Cardiovasc Diabetol,2018,17(1):99.
[7] Li Z,Agrawal V,Ramratnam M,et al. Cardiac sodium-dependent glucose cotransporter 1 is a novel mediator of ischaemia/reperfusion injury[J]. Cardiovasc Res,2019,115(11):1646-1658.
[8] Carreño JE,Verdugo FJ,Contreras F,et al. Spironolactone inhibits the activity of the Na+/H+ exchanger in the aorta of mineralocor-ticoid-induced hypertensive rats[J]. J Renin Angiotensin Aldosterone Syst,2015,16(4):1225-1231.
[9] Uthman L,Baartscheer A,Bleijlevens B,et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts:inhibition of Na+/H+exchanger,lowering of cytosolic Na+ and vasodilation[J]. Diabetologia,2018,61(3):722-726.
[10] Prasad V,Lorenz J,Miller M,et al. Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress[J]. J Mol Cell Cardiol,2013,65:33-42.
[11] Baartscheer A,Schumacher CA,Wust RC,et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits[J]. Diabetologia,2017,60(3):568-573.
[12] Lopaschuk GD,Verma S. Empagliflozin’s fuel hypothesis: not so soon[J]. Cell Metab,2016,24(2):200-202.
[13] Mudaliar S,Alloju S,Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? a unifying hypothesis[J]. Diabetes Care,2016,39(7):1115-1122.
[14] Santos-Gallego C,Requena-Ibanez J,San Antonio R,et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics[J]. J Am Coll Cardiol,2018,73(15):1931-1944.
[15] Nielsen R,Møller N,Gormsen LC,et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients[J]. Circulation,2019,139(18):2129-2141.
[16] Thorp AA,Schlaich MP. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome[J]. J Diabetes Res,2015,2015:341583.
[17] Jordan J,Tank J,Heusser K,et al. The effect of empagliflozin on muscle sympathetic nerve activity in patients with typeⅡ diabetes mellitus[J]. J Am Soc Hypertens,2017,11(9):604-612.
[18] Chen L,Yang G. Recent advances in circadian rhythms in cardiovascular system[J]. Front Pharmacol,2015,6:71.
[19] Ohkubo T,Hozawa A,Yamaguchi J,et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure:the Ohasama study[J]. J Hypertens,2002,20(11):2183-2189.
[20] Mori H,Okada Y,Kawaguchi M,et al. A case of type 2 diabetes with a change from a non-dipper to a dipper blood pressure pattern by dapagliflozin[J]. J UOEH,2016,38(2):149-153.
[21] Chilton R,Tikkanen I,Hehnke U,et al. Impact of empagliflozin on blood pressure in dipper and non-dipper patients with type 2 diabetes mellitus and hypertension[J]. Diabetes Obesity Metab,2017,19(11):1620-1624.
[22] Conde SV,Sacramento JF,Guarino MP,et al. Carotid body,insulin, and metabolic diseases:unraveling the links[J]. Front Physiol,2014,5:418.
[23] Guyenet PG. Putative mechanism of salt-dependent neurogenic hypertension:cell-autonomous activation of organum vasculosum laminae terminalis neurons by hypernatremia[J]. Hypertension,2017,69(1):20-22.
[24] Matthews VB,Elliot RH,Rudnicka C,et al. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2[J]. J Hypertens,2017,35(10):2059-2068.
[25] Lee TM,Chang NC,Lin SZ. Dapagliflozin, a selective SGLT2 inhibitor,attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts[J]. Free Radic Biol Med,2017,104:298-310.
[26] Kang S,Verma S,Hassanabad AF,et al. Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts: novel translational clues to explain EMPA-REG OUTCOME results[J]. Can J Cardiol,2020,36(4):543-553.
[27] Leng W,Ouyang X,Lei X,et al. The SGLT-2 inhibitor dapagliflozin has a therapeutic effect on atherosclerosis in diabetic ApoE-/- mice[J].Mediators Inflamm,2016,2016:6305735.
[28] Ye Y,Bajaj M,Yang HC,et al. SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor[J]. Cardiovasc Drugs Ther,2017,31(2):119-132.
相似文献/References:
[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(9):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(9):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(9):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(9):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(9):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on
Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(9):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(9):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(9):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(9):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(9):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
[11]张阳扬 尹德录.新型降糖药物在心力衰竭中的应用前[J].心血管病学进展,2020,(6):599.[doi:10.16806/j.cnki.issn.1004-3934.20.06.010]
ZHANG Yangyang,YIN Delu.Prospect of New Glucose-lowering Drugs in Heart Failure[J].Advances in Cardiovascular Diseases,2020,(9):599.[doi:10.16806/j.cnki.issn.1004-3934.20.06.010]
[12]杨宜恒 郑振中.钠-葡萄糖协同转运蛋白2抑制剂对于未合并2型糖尿病的心力衰竭患者治疗的研究进展[J].心血管病学进展,2021,(12):1093.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.009]
YANG Yiheng,ZHENG Zhenzhong.Treatment of Sodium-Glucose Co-Transporter 2 Inhibitor in Patients with Heart Failure without Type 2 Diabetes[J].Advances in Cardiovascular Diseases,2021,(9):1093.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.009]
[13]张敏 龙开超 唐毅 刘君宇 彭建强.钠-葡萄糖协同转运蛋白2抑制剂使心力衰竭获益机制研究进展[J].心血管病学进展,2021,(12):1096.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.010]
ZHANG Min,LONG Kaichao,TANG Yi,et al.Mechanism of the Benefit of Sodium-Glucose?o-Transporter 2 Inhibitors in Heart Failure[J].Advances in Cardiovascular Diseases,2021,(9):1096.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.010]