[1]和丽丽 左庆娟 张国瑞 郭艺芳.钠-葡萄糖协同转运蛋白2抑制剂使心力衰竭获益的作用机制[J].心血管病学进展,2020,(9):954-957.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.017]
 HE Lili,ZUO Qingjuan,ZHANG Guorui,et al.Mechanism of Benefit of Sodium-glucose Co-transporter 2 Inhibitors in Heart Failure[J].Advances in Cardiovascular Diseases,2020,(9):954-957.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.017]
点击复制

钠-葡萄糖协同转运蛋白2抑制剂使心力衰竭获益的作用机制()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年9期
页码:
954-957
栏目:
出版日期:
2020-09-25

文章信息/Info

Title:
Mechanism of Benefit of Sodium-glucose Co-transporter 2 Inhibitors in Heart Failure
作者:
和丽丽1 左庆娟1 张国瑞2 郭艺芳1
(1.河北省人民医院老年心血管内科,河北 石家庄 050051;2.石家庄市第三医院心血管内科,河北 石家庄 050011)
Author(s):
HE Lili1 ZUO Qingjuan1 ZHANG Guorui2 GUO Yifang1
(1. Geriatric Cardiology Department, Hebei General Hospital, Shijiazhuang 050051, Hebei, China 2. Cardiology Department, The Third Hospital of Shijiazhuang, Shijiazhuang 050011, Hebei, China)
关键词:
钠-葡萄糖协同转运蛋白2抑制剂心力衰竭作用机制
Keywords:
Sodium-glucose co-transporters 2 Heart failure Mechanism
DOI:
10.16806/j.cnki.issn.1004-3934.2020.09.017
摘要:
钠-葡萄糖协同转运蛋白2抑制剂是一类新型降糖药物,在心血管及肾脏保护方面展现出了巨大的优势。达格列净与心力衰竭不良结局的预防研究显示,无论是否合并糖尿病,钠-葡萄糖协同转运蛋白2抑制剂均可减少射血分数降低性心力衰竭患者的心血管死亡率、因心力衰竭再住院率和心力衰竭急诊率。但钠-葡萄糖协同转运蛋白2抑制剂使心力衰竭患者获益确切机制不明,现总结钠-葡萄糖协同转运蛋白2抑制剂对心力衰竭患者的影响以及探讨其可能的作用机制。
Abstract:
Sodium-glucose co-transporters 2(SGLT-2) inhibitors are a new class of antidiabetic drugs, which have shown great advantages in cardiovascular and renal protection. The Dapagliflozin and Heart Failure Prevention Outcome Study (DAPA-HF) trial demonstrated the benefits of dapagliflozin to reduce cardiovascular mortality, rehospitalization and emergency for heart failure in patients with established heart failure with reduced ejection fraction. In DAPA-HF, the benefits of dapagliflozin on heart failure were seen to a similar extent in both patients with or without diabetes. However, the exact mechanism by which SGLT-2 inhibitors benefit patients with heart failure is unknown. This article summarizes the effects of SGLT-2 inhibitors on patients with heart failure and explores its possible mechanisms.

参考文献/References:

[1] 高斯德,李卫萍,李虹伟. 钠-葡萄糖协同转运蛋白抑制剂与心力衰竭的研究进展[J]. 心血 管病学进展,2018,39(5):703-708. [2] Nassif ME,Windsor S,Tang F,et al. Dapagliflozin effects on biomarkers, symptoms, and functional status in patients with heart failure with reduced ejection fraction:the DEFINE-HF trial[J]. Circulation,2019,140(18):1463-1476. [3] Damman K,Kjekshus J,Wikstrand J,et al. Loop diuretics, renal function and clinical outcome in patients with heart failure and reduced ejection fraction[J]. Eur J Heart Fail,2016,18(3):328-836. [4] di Franco A,Cantini G,Tani A,et al. Sodium-dependent glucose transporters(SGLT) in human ischemic heart:a new potential pharmacological target[J]. Int J Cardiol,2017,243:86-90. [5] Connelly KA,Zhang Y,Desjardins JF,et al. Dual inhibition of sodium-glucose linked cotransporters 1 and 2 exacerbates cardiac dysfunction following experimental myocardial infarction[J]. Cardiovasc Diabetol,2018,17(1):99. [7] Li Z,Agrawal V,Ramratnam M,et al. Cardiac sodium-dependent glucose cotransporter 1 is a novel mediator of ischaemia/reperfusion injury[J]. Cardiovasc Res,2019,115(11):1646-1658. [8] Carreño JE,Verdugo FJ,Contreras F,et al. Spironolactone inhibits the activity of the Na+/H+ exchanger in the aorta of mineralocor-ticoid-induced hypertensive rats[J]. J Renin Angiotensin Aldosterone Syst,2015,16(4):1225-1231. [9] Uthman L,Baartscheer A,Bleijlevens B,et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts:inhibition of Na+/H+exchanger,lowering of cytosolic Na+ and vasodilation[J]. Diabetologia,2018,61(3):722-726. [10] Prasad V,Lorenz J,Miller M,et al. Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress[J]. J Mol Cell Cardiol,2013,65:33-42. [11] Baartscheer A,Schumacher CA,Wust RC,et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits[J]. Diabetologia,2017,60(3):568-573. [12] Lopaschuk GD,Verma S. Empagliflozin’s fuel hypothesis: not so soon[J]. Cell Metab,2016,24(2):200-202. [13] Mudaliar S,Alloju S,Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? a unifying hypothesis[J]. Diabetes Care,2016,39(7):1115-1122. [14] Santos-Gallego C,Requena-Ibanez J,San Antonio R,et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics[J]. J Am Coll Cardiol,2018,73(15):1931-1944. [15] Nielsen R,Møller N,Gormsen LC,et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients[J]. Circulation,2019,139(18):2129-2141. [16] Thorp AA,Schlaich MP. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome[J]. J Diabetes Res,2015,2015:341583. [17] Jordan J,Tank J,Heusser K,et al. The effect of empagliflozin on muscle sympathetic nerve activity in patients with typeⅡ diabetes mellitus[J]. J Am Soc Hypertens,2017,11(9):604-612. [18] Chen L,Yang G. Recent advances in circadian rhythms in cardiovascular system[J]. Front Pharmacol,2015,6:71. [19] Ohkubo T,Hozawa A,Yamaguchi J,et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure:the Ohasama study[J]. J Hypertens,2002,20(11):2183-2189. [20] Mori H,Okada Y,Kawaguchi M,et al. A case of type 2 diabetes with a change from a non-dipper to a dipper blood pressure pattern by dapagliflozin[J]. J UOEH,2016,38(2):149-153. [21] Chilton R,Tikkanen I,Hehnke U,et al. Impact of empagliflozin on blood pressure in dipper and non-dipper patients with type 2 diabetes mellitus and hypertension[J]. Diabetes Obesity Metab,2017,19(11):1620-1624. [22] Conde SV,Sacramento JF,Guarino MP,et al. Carotid body,insulin, and metabolic diseases:unraveling the links[J]. Front Physiol,2014,5:418. [23] Guyenet PG. Putative mechanism of salt-dependent neurogenic hypertension:cell-autonomous activation of organum vasculosum laminae terminalis neurons by hypernatremia[J]. Hypertension,2017,69(1):20-22. [24] Matthews VB,Elliot RH,Rudnicka C,et al. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2[J]. J Hypertens,2017,35(10):2059-2068. [25] Lee TM,Chang NC,Lin SZ. Dapagliflozin, a selective SGLT2 inhibitor,attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts[J]. Free Radic Biol Med,2017,104:298-310. [26] Kang S,Verma S,Hassanabad AF,et al. Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts: novel translational clues to explain EMPA-REG OUTCOME results[J]. Can J Cardiol,2020,36(4):543-553. [27] Leng W,Ouyang X,Lei X,et al. The SGLT-2 inhibitor dapagliflozin has a therapeutic effect on atherosclerosis in diabetic ApoE-/- mice[J].Mediators Inflamm,2016,2016:6305735. [28] Ye Y,Bajaj M,Yang HC,et al. SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor[J]. Cardiovasc Drugs Ther,2017,31(2):119-132.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(9):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(9):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(9):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(9):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(9):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(9):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(9):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
 GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(9):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(9):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
 WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(9):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
[11]张阳扬 尹德录.新型降糖药物在心力衰竭中的应用前[J].心血管病学进展,2020,(6):599.[doi:10.16806/j.cnki.issn.1004-3934.20.06.010]
 ZHANG Yangyang,YIN Delu.Prospect of New Glucose-lowering Drugs in Heart Failure[J].Advances in Cardiovascular Diseases,2020,(9):599.[doi:10.16806/j.cnki.issn.1004-3934.20.06.010]
[12]杨宜恒 郑振中.钠-葡萄糖协同转运蛋白2抑制剂对于未合并2型糖尿病的心力衰竭患者治疗的研究进展[J].心血管病学进展,2021,(12):1093.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.009]
 YANG Yiheng,ZHENG Zhenzhong.Treatment of Sodium-Glucose Co-Transporter 2 Inhibitor in Patients with Heart Failure without Type 2 Diabetes[J].Advances in Cardiovascular Diseases,2021,(9):1093.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.009]
[13]张敏 龙开超 唐毅 刘君宇 彭建强.钠-葡萄糖协同转运蛋白2抑制剂使心力衰竭获益机制研究进展[J].心血管病学进展,2021,(12):1096.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.010]
 ZHANG Min,LONG Kaichao,TANG Yi,et al.Mechanism of the Benefit of Sodium-Glucose?o-Transporter 2 Inhibitors in Heart Failure[J].Advances in Cardiovascular Diseases,2021,(9):1096.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.010]

备注/Memo

备注/Memo:
通信作者:郭艺芳,E-mail:guoyifang@hotmail.com 收稿日期:2020-03-24
更新日期/Last Update: 2020-12-03