参考文献/References:
[1].Slocum C,Kramer C,Genco CA. Immune dysregulation mediated by the oral microbiome:potential link to chronic inflammation and atherosclerosis[J]. J Intern Med,2016,280(1):114-128.
[2].Bertin R,Chen Z,Marin R,et al. Activity of myricetin and other plant-derived polyhydroxyl compounds in human LDL and human vascular endothelial cells against oxidative stress[J]. Biomed Pharmacother,2016,82:472-478.
[3].Wei R,Enaka M,Muragaki Y. Activation of KEAP1/NRF2/P62 signaling alleviates high phosphate-induced calcification of vascular smooth muscle cells by suppressing reactive oxygen species production[J]. Sci Rep,2019,9(1):10366.
[4].Yamamoto M,Kensler TW,Motohashi H. The KEAP1-NRF2 System:a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis[J]. Physiol Rev,2018,98(3):1169-1203.
[5].Malhotra D,Portales-Casamar E,Singh A,et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis[J]. Nucleic Acids Res,2010,38(17):5718-5734.
[6].Schmoll D,Engel CK,Glombik H. The Keap1-Nrf2 protein-protein interaction:A suitable target for small molecules[J]. Drug Discov Today Technol,2017,24:11-17.
[7].Silva-Islas CA,Maldonado PD. Canonical and non-canonical mechanisms of Nrf2 activation[J]. Pharmacol Res,2018,134:92-99.
[8].Hashimoto K,Simmons AN,Kajino-Sakamoto R,et al. TAK1 Regulates the Nrf2 Antioxidant System Through Modulating p62/SQSTM1[J]. Antioxid Redox Signal,2016,25(17):953-964.
[9].Goode A,Rea S,Sultana M,et al. ALS-FTLD associated mutations of SQSTM1 impact on Keap1-Nrf2 signalling[J]. Mol and Cell Neurosci,2016,76:52-58.
[10].Riz I,Hawley TS,Marsal JW,et al. Noncanonical SQSTM1/p62-Nrf2 pathway activation mediates proteasome inhibitor resistance in multiple myeloma cells via redox,metabolic and translational reprogramming[J]. Oncotarget,2016,7(41):66360‐66385.
[11].Sun X,Ou Z,Chen R,et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells[J]. Hepatology,2016,63(1):173-184.
[12].[12] Maltese G,Psefteli PM,Rizzo B,et al. The anti-ageing hormone klotho induces Nrf2-mediated antioxidant defences in human aortic smooth muscle cells[J]. J Cell Mol Med,2017 21(3):621-627.
[13].[13] Jin Z,Xiao Y,Yao F,et al. SIRT6 inhibits cholesterol crystal-induced vascular endothelial dysfunction via Nrf2 activation[J]. Exp Cell Res,2020,387(1):111744.
[14].[14] Yan R,Yan J,Chen X,et al. Xanthoangelol Prevents Ox-LDL-Induced Endothelial Cell Injury by Activating Nrf2/ARE Signaling[J]. J Cardiovasc Pharmacol,2019,74(2):162-171.
[15].[15] Huang MZ,Yang YJ,Liu XW,et al. Aspirin eugenol ester attenuates oxidative injury of vascular endothelial cells by regulating NOS and Nrf2 signalling pathways[J]. Br J Pharmacol,2019,176(7):906-918.
[16].[16] Yang Y,Li X,Peng L,et al. Tanshindiol C inhibits oxidized low-density lipoprotein induced macrophage foam cell formation via a peroxiredoxin 1 dependent pathway[J]. Biochim Biophys Acta Mol Basis Dis,2018,1864(3):882-890.
[17].[17] Ooi BK,Goh BH,Yap WH. Oxidative stress in cardiovascular diseases:involvement of Nrf2 antioxidant redox signaling in macrophage foam cells formation[J]. Int J Mol Sci,2017,18(11):2336.
[18].[18] Ren J,Su D,Li L,et al. Anti-inflammatory effects of Aureusidin in LPS-stimulated RAW264.7 macrophages via suppressing NF-κB and activating ROS- and MAPKs-dependent Nrf2/HO-1 signaling pathways[J]. Toxicol Appl Pharmacol,2020,387:114846.
[19].[19] Li H,Zhu X,Hu L,et al. Loss of exosomal MALAT1 from ox-LDL-treated vascular endothelial cells induces maturation of dendritic cells in atherosclerosis development[J]. Cell Cycle,2019,18(18):2255-2267.
[20].[20] Hu Q,Zhang T,Yi L,et al. Dihydromyricetin inhibits NLRP3 inflammasome-dependent pyroptosis by activating the Nrf2 signaling pathway in vascular endothelial cells[J]. Biofactors,2018,44(2):123-136.
[21].[21]武亚琳,梁斌,杨志明. NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J]. 心血管病学进展,2019,40(6):943-946.
[22].[22] Liu J,Yang B,Wang Y,et al. Polychlorinated biphenyl quinone promotes macrophage polarization to CD163+ cells through Nrf2 signaling pathway[J]. Environ Pollut ,2020,257:113587.
[23].[23] Bozaykut P,Karademir B,Yazgan B,et al. Effects of vitamin E on peroxisome proliferator-activated receptor γ and nuclear factor-erythroid 2-related factor 2 in hypercholesterolemia-induced atherosclerosis[J]. Free Radic Biol Med,2014,70:174-181.
[24].[24] Kloska D,Kopacz A,Piechota-Polanczyk A,et al. Nrf2 in aging - Focus on the cardiovascular system [J]. Vascul Pharmacol,2019,112:42-53.
[25].[25] Freigang S,Ampenberger F,Spohn G,et al. Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis[J]. Eur J Immunol,2011,41(7):2040-2051.
[26].[26] Barajas B,Che N,Yin F,et al. NF-E2-related factor 2 promotes atherosclerosis by effects on plasma lipoproteins and cholesterol transport that overshadow antioxidant protection[J]. Arterioscler Thromb Vasc Biol,2011,31(1):58-66.
[27].[27] 孙雪梅,王瑞婷. 核因子相关因子2-抗氧化反应元件信号传导通路对心血管疾病保护作用的研究进展[J]. 临床内科杂志,2015,32(8):572-574.
[28].[28] Matana A,Ziros PG,Chartoumpekis DV,et al. Rare and common genetic variations in the Keap1/Nrf2 antioxidant response pathway impact thyroglobulin gene expression and circulating levels,respectively[J]. Biochem Pharmacol, 2020 ,173:113605.
[29].[29] Ungvari Z,Tarantini S,Nyúl-Tóth ?,et al. Nrf2 dysfunction and impaired cellular resilience to oxidative stressors in the aged vasculature:from increased cellular senescence to the pathogenesis of age-related vascular diseases[J]. GeroScience,2019,41(6):727-738.
相似文献/References:
[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(8):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(8):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(8):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(8):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(8):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(8):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(8):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(8):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]