[1]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260-1263.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(9):1260-1263.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
点击复制

白介素22在动脉粥样硬化和2型糖尿病中的作用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2019年9期
页码:
1260-1263
栏目:
综述
出版日期:
2019-12-25

文章信息/Info

Title:
IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus
作者:
徐侨12 刘正霞2 鲁翔12
(1. 南京医科大学,江苏 南京 211166 ;2. 南京医科大学第二附属医院老年医学实验室,江苏 南京 210011 )
Author(s):
XU Qiao12 LIU Zhengxia2 LU Xiang12
Nanjing Medical University, Nanjing 211166, Jiangsu, China; 2. Laboratory of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China)
关键词:
白介素22动脉粥样硬化2型糖尿病
Keywords:
Interleukin 22 Atherosclerosis Type 2 diabetes mellitus
DOI:
10.16806/j.cnki.issn.1004-3934.2019.09.019
摘要:
低度慢性炎症是动脉粥样硬化和2型糖尿病的可能发病机制。白介素22在慢性炎症反应过程中起到重要作用,主要表现为白介素22可调节动脉粥样硬化斑块的形成、抑制β细胞氧化应激和内质网应激、恢复胰岛素分泌作用以及对糖脂代谢调节的保护作用。现着重讨论白介素22在动脉粥样硬化及2型糖尿病中发挥的作用和可能机制。
Abstract:
Studies suggest that low-degree chronic inflammation is a possible mechanism for atherosclerosis and type 2 diabetes. Interleukin 22 plays an important role in the process of chronic inflammation,which can regulate the formation of atherosclerotic plaques, inhibit β-cell oxidative stress and endoplasmic reticulum stress, restore insulin secretion, and protect regulation of glucose and lipid metabolism. This paper focuses on the role and possible mechanism of interleukin 22 on atherosclerosis and type 2 diabetes mellitus

参考文献/References:


[1]Li LJ,Gong C,Zhao MH,et al.Role of interleukin-22 in inflammatory bowel disease[J].World J Gastroenterol,2014,20(48):18177-18188.

[2]Perriard G,Mathias A,Enz L,et al.Interleukin-22 is increased in multiple sclerosis patients and targets astrocytes[J].J Neuroinflammation,2015,12(1):119.

[3]Witte E,Witte K,Warszawska K,et al.Interleukin-22:a cytokine produced by T,NK and NKT cell subsets,with importance in the innate immune defense and tissue protection[J].Cytokine Growth Factor Rev,2010,21(5):365-379.

[4]Wolk K,Kunz S,Witte E,et al.IL-22 increases the innate immunity of tissues[J]. Immunity,2004,21(2):241-254.

[5]Zheng Y,Li T.Interleukin-22,a potent target for treatment of non-autoimmune diseases[J].Hum Vaccin Immunother,2018,14(12): 2811-2819.

[6]Dudakov JA,Hanash AM,van den Brink MR.Interleukin-22:Immunobiology and pathology[J].Annu Rev Immunol,2015,33(1):747-785.

[7]Huber S,Gagliani N,Zenewicz LA.IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine[J].Nature,2012,491(7423):259-263.

[8]Xia Q,Xiang X,Patel S,et al.Characterisation of IL-22 and interferon-gamma-inducible chemokines in human carotid plaque[J].Int J Cardiol,2012,154(2):187-189.

[9]Gong F,Wu J,Zhou P,et al.Interleukin-22 might act as a double-edged sword in type 2 diabetes and coronary artery disease[J]. Mediators Inflamm,2016, 2016: 8254797.

[10]Lin Y,Wu B,Lu Z,et al.Circulating Th22 and Th9 levels in patients with acute coronary syndrome[J]. Mediators Inflamm,2013,2013:635672.

[11]Yang L,Zhang Y,Wang L,et al.Amelioration of high fat diet induced liver lipogenesis and hepatic steatosis by interleukin-22[J].J Hepatol,2010,53(2):339-347.

[12]Wang X,Ota N,Manzanillo P,et al.Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes[J].Nature,2014,514(7521):237-241.

[13]Rattik S,Hultman K,Rauch U,et al.IL-22 affects smooth muscle cell phenotype and plaque formation in apolipoprotein E knockout mice[J].Atherosclerosis, 2015, 242(2):506-514.

[14]Libby P,Aikawa M.Stabilization of atherosclerotic plaques:new mechanisms and clinical targets[J].Nat Med,2002,8(11):1257-1262.

[15]Kolls JK,McCray PB,Chan YR.Cytokine-mediated regulation of antimicrobial proteins[J].Nat Rev Immunol,2008,8(11):829-835 .

[16]Fatkhullina AR,Peshkova IO,Dzutsev A,et al.An interleukin-23-interleukin-22 axis regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis[J].Immunity,2018,49(5):1-15.

[17]Kennedy MA,Barrera GC,Nakamura K,et al.ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation[J]. Cell Metab,2005,1(2):121-131.

[18]Chellan B,Yan L,Sontag TJ,et al.IL-22 is induced by S100/calgranulin and impairs cholesterol efflux in macrophages by downregulating ABCG1[J].J Lipid Res,2013,55(3):443-454.

[19]Shen J,Fang Y,Zhu H,et al.Plasma interleukin-22 levels are associated with prediabetes and type 2 diabetes in the Han Chinese population[J].J Diabetes Investig, 2017,9(1):33-38.

[20]Hasnain SZ,Borg DJ,Harcourt BE,et al.Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress[J].Nat Med, 2014, 20(12):1417-1426.

[21]Ashcroft FM,Rorsman P.Diabetes mellitus and the beta cell:the last ten years[J]. Cell, 2012,148(6):1160-1171.

[22]Hasnain SZ,Prins JB,McGuckin MA.Oxidative and endoplasmic reticulum stress in β-cell dysfunction in diabetes[J].J Mol Endocrinol,2016,56(2):R33-R54.

[23]Hou R,Zhang J,Yin T,et al.Upregulation of PTEN by peroxynitrite contributes to cytokine-induced apoptosis in pancreatic β-cells[J].Apoptosis,2010,15(8):877-886.

[24]Hu M,Yang S,Yang L,et al.Interleukin-22 alleviated palmitate-induced endoplasmic reticulum stress in INS-1 cells through activation of autophagy[J].PLoS ONE,2016,11(1),e0146818.

[25]Hartmann P,Seebauer CT,Mazagova M,et al.Deficiency of intestinal mucin-2 protects mice from diet-induced fatty liver disease and obesity[J].Am J Physiol Gastrointest Liver Physiol,2016,310(5):G310-G322.

[26]Shang H,Sun J,Chen YQ.Clostridium butyricum CGMCC0313.1 modulates lipid profile, insulin resistance and colon homeostasis in obese mice[J].PLoS ONE, 2016,11(4),e0154373.

[27]Hu M,Lin H,Yang L,et al.Interleukin-22 restored mitochondrial damage and impaired glucose-stimulated insulin secretion through down-regulation of uncoupling protein-2 in INS-1 cells[J].J Biochem,2017,161(5):433-439.

[28]Herder C,Kannenberg JM,Carstensen-Kirberg M,et al.Serum levels of interleukin-22,cardiometabolic risk factors and incident type 2 diabetes: KORA F4/FF4 study[J].Cardiovasc Diabetol,2017,16(1):17.

[29]Fabbrini E,Cella M,McCartney SA,et al.Association between specific adipose tissue CD4 + T- cell populations and insulin resistance in obese individuals[J]. Gastroenterology,2013,145(2):366-374.

[30]Dalmas E,Donath, MY.A role for interleukin-22 in the alleviation of metabolic syndrome[J].Nat Med,2014,20(12):1379-1381.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(9):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(9):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(9):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(9):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[9]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(9):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
[10]林春尧 刘晓辉.IL-33/ST2在冠心病中的研究进展[J].心血管病学进展,2020,(2):128.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.007]
 LIN Chunyao LIU Xiaohui.IL-33/ST2 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2020,(9):128.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.007]

更新日期/Last Update: 2020-02-06