[1]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943-946.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(6):943-946.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
点击复制

NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用(/HTML)
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2019年6期
页码:
943-946
栏目:
综述
出版日期:
2019-09-25

文章信息/Info

Title:
The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application
作者:
武亚琳1 梁斌2 杨志明2
(山西医科大学,山西 太原 030000;2.山西医科大学第二临床医学院心内科,山西 太原 030000)
Author(s):
WU Yalin1LIANG Bin2YANG Zhiming2
(1.Shanxi Medical UniversityTaiyuan 030000ShanxiChina2.Department of CardiologySecond Clinical Medical CollegeShanxi Medical UniversityTaiyuan 030000ShanxiChina)
关键词:
动脉粥样硬化炎症NLRP3炎症小体IL-1βCANTOS
Keywords:
AtherosclerosisinflammationNLRP3 inflammasomeIL-1CANTOS
DOI:
10.16806/j.cnki.issn.1004-3934.2016.06.026
摘要:
心血管疾病是全球首要死亡原因,动脉粥样硬化是其潜在病理机制。目前,动脉粥样硬化的炎症理论已深入人心。Canakinumab Anti-Inflammatory Thrombosis Outcome Study(CANTOS)直接验证这一理论,它证明了白介素(IL)-1β的特异性抗体Canakinumab的临床治疗前景。IL-1β是IL-1家族中经典的促炎细胞因子,可促进动脉粥样硬化形成及斑块不稳定。炎症小体参与炎症的发生与进展,NLRP3炎症小体是研究最为广泛的炎症小体,激活的NLRP3炎症小体可促进IL-1β的分泌与成熟,导致动脉粥样硬化进展。现主要综述NLPR3/IL-1β途径在动脉粥样硬化中的作用,并结合CANTOS结果探讨抗炎治疗在临床上的应用前景。
Abstract:
Cardiovascular disease is currently the leading cause of death worldwide, and atherosclerosis (AS) is primary mechanism. At present, the theory of inflammation of atherosclerosis has been deeply comfired. The Canakinumab Anti-Inflammatory Thrombosis Outcome Study (CANTOS) results directly validate this theory, which demonstratesthe clinical therapeutic potential of IL-1β specific antibody Canakinumab. IL-1β is a classical pro-inflammatory cytokine in the IL-1 family that promotes AS and plaque instability. Inflammasomes are involved in the development and progression of inflammation. NLRP3 inflammasomewas the most widely studied. Activated NLRP3 inflammasome promote the secretion and maturation of IL-1β, leading to the progression of AS. This article mainly describes the role of NLPR3/IL-1β pathway in AS, and combined with the results of CANTOS to explore the clinical application of anti-inflammatory therapy,

参考文献/References:

[1] RossR.Atherosclerosis—An Inflammatory Disease[J].New Engl J Med,1999,340(2):115-126.

[2]Duewell P, Kono?H, Rayner KJ, et al.NLRP3 inflammasomes arerequired for atherogenesis and activated by cholesterol crystals[J]. Nature,2010,464(7293):1357-1361.

[3]Rock KL, Latz E, Ontiveros F,et al.The sterile inflammatory response[J].Annu Rev Immunol,2010,28:321-342.

[4]Martinon F,Burns K,Tschopp J. The inflammasome:a molecular platform triggering activation of inflammatory caspases and processing of proIL- beta[J]. Mol Cell,2002,10(2):417-426.

[5]Bauernfeind FG,Horvath G,Stutz A,et al.Cutting edge:NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression[J]. J Immunol,2009,183(2):787-791.

[6]Libby P. History of discovery: in?ammation in?atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2012,32(9):2045-2051.

[7]Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity[J]. Immunol Rev,2018,281(1):8-27.

[8]Abais JM, Xia M, Zhang Y,et al. Redox regulation of NLRP3 inflammasomesROS as trigger or effector?[J].Antioxid Redox Signal,2015,22(13):1111-1129.

[9]Dubyak GR.P2X7 receptor regulation of non- classical secretion from immune effector cells[J]. Cellular Microbiol,2012,14(11):1697-1706.

[10]Orlowski?GM,Colbert?JD,SharmaS,et al.Multiple?cathepsins?promote?pro-IL-1β?synthesis and NLRP3-mediated IL-1β?activation[J]. J Immunology, 2015,195(4):1685-1697.

[11]Zhou R,Tardivel A,Thorens B,et al.Thioredoxin-interacting protein links oxidative stress to inflammasome activation[J].Nat Immunol,2010,11(2):136-140.

[12]Hoseini Z,Sepahvand F,Rashidi B,et al. NLRP3 inflammasome:its regulation and involvement in atherosclerosis[J]. J Cell Physiol,2018,233(3):2116-2132.

[13]Galea J, Armstrong J, Gadsdon P, et al. Interleukin-1 beta in coronary arteries of patients with ischemic heart disease[J].Arterioscler Thromb Vasc Biol,1996,16(8):1000-1006..

[14]Kirii H,Niwa T,Yamada Y,et al.Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice[J].Arterioscler Thromb Vasc Biol, 2003,23(4):656-660.

[15]Bhaskar V,Yin J, Mirza AM, et al. Monoclonal antibodies targeting IL-1 beta reduce biomarkers of atherosclerosis in vitro and inhibit atherosclerotic plaque formation in Apolipoprotein E-deficient mice[J].Atherosclerosis, 2011,216(2):313-320.

[16]Zheng F,Xing S,Gong Z,et al. NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis[J]. Heart Lung Circ,2013,22(9):746-750.

[17]Bando S, Fukuda D, Soeki T, et al. Expression of NLRP3 in subcutaneous adipose tissue is associated with coronary atherosclerosis[J]. Atherosclerosis,2015,242(2):407-414.

[18]Paramel Varghese G, Folkersen L, Strawbridge RJ, et al. NLRP3 inflammasome expression and activation in human atherosclerosis[J]. J Am Heart Assoc,2016,5(5):e003031.

[19]Shi?X,Xie WL,Kong WW, et al.Expression of the NLRP3 inflammasome in carotid atherosclerosis[J]. J Stroke Cerebrovasc Dis,2015,24(11):2455-2466.

[20]Ridker PM, Everett BM, Thuren T, et al. Anti-in?ammatory therapy with canakinumab for atherosclerotic disease[J]. N Engl J Med,2017,377(12):1119-1131.

[21]Libby P. Interleukin-1 beta as a target for?atherosclerosis therapy: biological basis of?CANTOS and beyond[J]. JACC, 2017,70(18):?2278-2289.

[22]Ridker PM,Everett BM,Pradhan A,et al. Low-dose methotrexate for the prevention of atherosclerotic events[J]. N Engl J Med,2019,380(8):752-762.

[23]Chan ES, Cronstein BN. Methotrexate—how does it really work? [J].Nat Rev Rheumatol,2010;6(3):175-178.

[24]Ridker PM. From C-reactive protein to interleukin-6 to interleukin-1: Moving upstream to identify novel targets for atheroprotection[J]. Circ Res,2016,118(1):145- 156.

[25]Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction[J]. Nat Rev Cardiol,2018,15(4):203-214.

[26]van der Heijden T,Kritikou E,Venema W,et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein edeficient mice-brief report[J].Arterioscler Thromb Vasc Biol,2017,37(8):1457-1461.

[27]van Hout GP,Bosch L,Ellenbroek GH,et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction[J]. Eur Heart J,2017,38(11):828- 836.


相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(6):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]胥雪莲,何川.炎症与动脉粥样硬化[J].心血管病学进展,2015,(5):634.[doi:10.3969/j.issn.1004-3934.2015.05.029]
 XU Xuelian,HE Chuan.Inflammation and Atherosclerosis[J].Advances in Cardiovascular Diseases,2015,(6):634.[doi:10.3969/j.issn.1004-3934.2015.05.029]
[3]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(6):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[4]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(6):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(6):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(6):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(6):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[8]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(6):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[9]宋志平 杨永健.GPR 35在心血管疾病中的研究进展[J].心血管病学进展,2019,(9):1304.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.031]
 SONG Zhiping,YANG Yongjian.The Current Progress of GPR 35 in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(6):1304.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.031]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(6):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
[11]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(6):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[12]张颖怡 刘金波 刘欢 赵娜 赵红薇 王宏宇.全身动脉粥样硬化斑块与脑梗死的关系:北京血管病变评价研究结果[J].心血管病学进展,2021,(3):277.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.020]
 ZHANG YingyiLIU J inboLIU HuanZHAO NaZHAO HongweiWANG Hongyu.The Relationship Between Systematic Atherosclerotic Plaques and Cerebral Infarction:Results from Beijing Vascular Disease Evaluation Study[J].Advances in Cardiovascular Diseases,2021,(6):277.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.020]
[13]李佳珊 关秀茹.ABCA1:调控胆固醇逆向转运与炎症激活之间关系的研究新进展[J].心血管病学进展,2021,(7):649.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.018]
 LI Jiashan,GUAN Xiuru.ABCA1: New Progress in Regulating the Relationship Between Cholesterol Reverse Transport and Inflammation Activation[J].Advances in Cardiovascular Diseases,2021,(6):649.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.018]
[14]原达 朱国斌.血小板P选择素及CD40/CD40L在动脉粥样硬化中的研究进展[J].心血管病学进展,2021,(10):928.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.016]
 YUAN Da,ZHU Guobin.Research Progress of Platelet-Related P-Selectin and?D40L Pro-Inflammatory Effects in Atherosclerosis[J].Advances in Cardiovascular Diseases,2021,(6):928.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.016]
[15]肖明瑛 苏冠华.PCSK9抑制剂多效性研究进展[J].心血管病学进展,2022,(2):124.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.008]
 XIAO MingyingSU Guanhua.Pleiotropic Effects of PCSK9 Inhibitors[J].Advances in Cardiovascular Diseases,2022,(6):124.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.008]
[16]王朝阳 赵丽娜 田师鹏 陈淑霞 谷剑.炎症治疗在动脉粥样硬化中的研究进展[J].心血管病学进展,2023,(6):519.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.009]
 WANG Zhaoyang,ZHAO Lina,TIAN Shipeng,et al.Advances in the Treatment of Inflammation in Atherosclerosis[J].Advances in Cardiovascular Diseases,2023,(6):519.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.009]

备注/Memo

备注/Memo:
通讯作者:杨志明,E-mail:Zhimingyang800@sina.com收稿日期:2019-02-21
基金项目:国家自然科学基金面上项目(81570273)
更新日期/Last Update: 2019-12-17