[1]黄桢奇 周艳林 柯婷 肖洋.糖尿病血管重构中miR-126作用机制研究进展[J].心血管病学进展,2025,(3):249.[doi:10.16806/j.cnki.issn.1004-3934.2025.03.013]
 HUANG ZhenqiZHOU YanlinKE TingXIAO Yang.The Mechanism of miR-126 in Vascular Remodeling of Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2025,(3):249.[doi:10.16806/j.cnki.issn.1004-3934.2025.03.013]
点击复制

糖尿病血管重构中miR-126作用机制研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2025年3期
页码:
249
栏目:
综述
出版日期:
2025-03-25

文章信息/Info

Title:
The Mechanism of miR-126 in Vascular Remodeling of Diabetes Mellitus
作者:
黄桢奇1 周艳林 1 柯婷 2 肖洋23
(1.陕西中医药大学,陕西 咸阳 71 2000;2.陕西省中医医院,陕西 西安 710003 ;3.中国中医科学院研究生院,北京 100871)
Author(s):
HUANG Zhenqi1ZHOU Yanlin1KE Ting2XIAO Yang23
(1.Shaanxi University of Chinese Medicine,Xianyang 71 2000,Shanxi,China; 2.Shaanxi Provincial Hospital of Traditional Chinese Medicine,Xi ’ an 710003,Shanxi,China; 3.Graduate School of China Academy of Chinese Medical Sciences,Beijing 100871,China)
关键词:
糖尿病血管重构miR-126内皮细胞功能障碍
Keywords:
Diabetes mellitus Vascular remodeling miR-126 Endothelial cell dysfunction
DOI:
10.16806/j.cnki.issn.1004-3934.2025.03.013
摘要:
糖尿病(DM)是一种以高血糖、慢性炎症为特征的代谢系统疾病,DM所引起的代谢异常可引发大血管、微血管病变,导致DM血管重构。miR-126作为非编码型RNA,其在内皮细胞中特异性表达,广泛参与细胞分化、增殖等过程,对于治疗DM血管重构有重要临床意义。现对miR-126在DM血管重构中的作用机制作进一步阐述,以期为临床治疗提供新思路。
Abstract:
Diabetes mellitus (DM) is a metabolic system disease characterized by high blood sugar and low inflammation. The metabolic abnormalities caused by DM can lead to vascular lesions in both large and micro vessels,resulting in diabetic vascular remodeling. miR-126 is a non-coding RNA that is specifically expressed in endothelial cells and is widely involved in cell differentiation,proliferation,etc. It has important clinical significance in the treatment of diabetic vascular remodeling. This article further elaborates on the mechanism of miR-126 in diabetic vascular remodeling,in order to provide new ideas for clinical treatment

参考文献/References:

[1] Sun H ,Saeedi P,Karuranga S,et al. Erratum to "IDF Diabetes Atlas:Global,regional and country-level diabetes prevalence estimates for 2021 and projections for 2045" [Diabetes Res. Clin. Pract. 183 (2022) 109119][J]. Diabetes Res Clin Pract,2023,204:110945.

[2] Ma Y,Liu H,Wang Y,et al. Roles of physical exercise-induced MiR-126 in cardiovascular health of type 2 diabete[J]. Diabetol Metab Syndr,2022,14(1):169.

[3] Nanda M,Sharma R,Mubarik S,et al. Type-2 diabetes mellitus (T2DM):spatial-temporal patterns of incidence,mortality and attributable risk factors from 1990 to 2019 among 21 world regions[J]. Endocrine,2022,77(3):444-454.

[4] Ruze R ,Liu T ,Zou X ,et al. Obesity and type 2 diabetes mellitus:connections in epidemiology,pathogenesis,and treatments[J]. Front Endocrinol (Lausanne),2023,14:1161521.

[5] 薛佳欣,宫天宇,梁馨芳,等. 糖尿病血管重构作用机制的研究进展[J]. 心血管病学进展,2023,44(8):738-742.

[6] Ye C ,Zheng F ,Wu N ,et al. Extracellular vesicles in vascular remodeling[J]. Acta Pharmacol Sin,2022,43(9):2191-2201.

[7] Su Y ,Sun Y ,Tang Y ,et al. Circulating miR-19b-3p as a novel prognostic biomarker for acute heart failure[J]. J Am Heart Assoc,2021,10(20):e022304.

[8] Ho PTB,Clark IM,Le LTT. MicroRNA-based diagnosis and therapy[J]. Int J Mol Sci,2022,23(13):7167.

[9] Theofilis P ,Oikonomou E ,vogiatzi G ,et al. The role of microRNA-126 in atherosclerotic cardiovascular diseases[J]. Curr Med Chem,2023,30(17):1902-1921.

[10] Lu W ,Du X ,Zou S ,et al. IFN-γ enhances the therapeutic efficacy of MSCs-derived exosome via miR-126-3p in diabetic wound healing by targeting SPRED1[J]. J Diabetes,2024,16(1):e13465.

[11] Yan Y ,ZhuHU M,Ma J ,et al. MEK1/2 inhibitor inhibits neointima formation by activating miR-126-3p/ C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C motif chemokine receptor 4 (CXCR4) axis[J]. Bioengineered,2022,13(4):11214-11227.

[12] Wang Y ,Wang F ,Wu Y ,et al. MicroRNA-126 attenuates palmitate-induced apoptosis by targeting TRAF7 in HUVECs[J]. Mol Cell Biochem,2015,399(1-2):123-130.

[13] Izuhara M ,Kuwabara Y ,Saito N ,et al. Prevention of neointimal formation using miRNA-126-containing nanoparticle-conjugated stents in a rabbit model[J]. PLoS One,2017,12(3):e0172798.

[14] Cheng X ,Jian D ,Xing J ,et al. Circulating cardiac MicroRNAs safeguard against dilated cardiomyopathy[J]. Clin Transl Med,2023,13(5):e1258.

[15] Xin Y ,Zhang H ,Jia Z ,et al. Resveratrol improves uric acid-induced pancreatic β-cells injury and dysfunction through regulation of miR-126[J]. Biomed Pharmacother,2018,102:1120-1126.

[16] Pei C Z ,Liu B ,Li Y T ,et al. MicroRNA-126 protects against vascular injury by promoting homing and maintaining stemness of late outgrowth endothelial progenitor cells[J]. Stem Cell Res Ther,2020,11(1):28.

[17] 谢利平,孙仲煦,季勇. 气体信号分子与动脉粥样硬化[J]. 中国动脉硬化杂志,2023,31(4):304-311.

[18] Ahmed YM ,Orfali R ,Abdelwahab NS ,et al. Partial synthetic PPAR? derivative ameliorates aorta injury in experimental diabetic rats mediated by activation of miR-126-5p Pi3k/AKT/PDK 1/mTOR expression[J]. Pharmaceuticals (Basel),2022,15(10):1175.

[19] Yang H H ,Chen Y ,Gao C Y ,et al. Protective effects of microRNA-126 on human cardiac microvascular endothelial cells against hypoxia/reoxygenation-induced injury and inflammatory response by activating PI3K/Akt/eNOS signaling pathway[J]. Cell Physiol Biochem,2017,42(2):506-518.

[20] Hao X ,Wang S ,Jiang C ,et al. The relation between plasma miR-126 levels and cerebral collateral circulation in patients with intracranial arterial stenosis[J]. Neurol Neurochir Pol,2021,55(3):281-288.

[21] Zhang L ,Ouyang P ,He G ,et al. Exosomes from microRNA-126 overexpressing mesenchymal stem cells promote angiogenesis by targeting the PIK3R2-mediated PI3K/Akt signalling pathway[J]. J Cell Mol Med,2021,25(4):2148-2162.

[22] Arderiu G ,Pe?a E ,Civit-urgell A ,et al. Endothelium-released microvesicles transport miR-126 that induces proangiogenic reprogramming in monocytes[J]. Front Immunol,2022,13:836662.

[23] Liu J ,Pan S ,Wang X ,et al. Role of advanced glycation end products in diabetic vascular injury:molecular mechanisms and therapeutic perspectives[J]. Eur J Med Res,2023,28(1):553.

[24] Li A ,Yan J ,Zhao Y ,et al. Vascular aging:assessment and intervention[J]. Clin Interv Aging,2023,18:1373-1295.

[25] Huang W ,Zhao H ,Dong H ,et al. High-mobility group box 1 impairs airway epithelial barrier function through the activation of the RAGE/ERK pathway[J]. Int J Mol Med,2016,37(5):1189-1198.

[26] Tang Y ,Chen Y ,Guo Q ,et al. miR-126-loaded Immunoliposomes against vascular endothelial inflammation in vitro and vivo evaluation[J]. Pharmaceutics,2023,15(5):1379.

[27] Guo B ,Shan SK ,Xu F ,et al. Protective role of small extracellular vesicles derived from HUVECs treated with AGEs in diabetic vascular calcification[J]. J Nanobiotechnology,2022,20(1):334.

[28] Zheng X ,Liu Z ,Bin Y ,et al. Ionizing radiation induces vascular smooth muscle cell senescence through activating NF-κB/CTCF/p16 pathway[J]. Biochim Biophys Acta Mol Basis Dis,2024,1870(3):166994.

[29] Hill M A ,Yang Y ,Zhang L ,et al. Insulin resistance,cardiovascular stiffening and cardiovascular disease[J]. Metabolism,2021,119:154766.

[30] Fang S ,Ma X ,Guo S ,et al. MicroRNA-126 inhibits cell viability and invasion in a diabetic retinopathy model via targeting IRS-1[J]. Oncol Lett,2017,14(4):4311-4318.

[31] Chen Z. Baicalin Suppresses the Proliferation and Migration of Ox-LDL-VSMCs in Atherosclerosis through Upregulating miR-126-5p [J]. 2019,(9):1517-1523.

[32] Li J ,Chen J ,Zhang F ,et al. LncRNA CDKN2B-AS1 hinders the proliferation and facilitates apoptosis of ox-LDL-induced vascular smooth muscle cells via the ceRNA network of CDKN2B-AS1/miR-126-5p/PTPN7[J]. Int J Cardiol,2021,340:79-87.

[33] Tang F. MicroRNA-126 alleviates endothelial cells injury in atherosclerosis by restoring autophagic flux via inhibiting of PI3K/Akt/mTOR pathway [J]. 2018,(1):1482-1489.

[34] Xu L ,Fan W ,Han M ,et al. Multienzyme-like active MnO2 nanozyme with ROS scavenging for inflammatory injury therapy induced by avian flavivirus through antiviral function [J]. Colloids Surf B Biointerfaces,2024,245:114302.

[35] Xu X ,Zhang H ,Li J ,et al. Combination of EPC-EXs and NPC-EXs with miR-126 and miR-210 overexpression produces better therapeutic effects on ischemic stroke by protecting neurons through the Nox2/ROS and BDNF/TrkB pathways[J]. Exp Neurol,2023,359:114235.

[36] Tang S T ,Wang F ,Shao M ,et al. MicroRNA-126 suppresses inflammation in endothelial cells under hyperglycemic condition by targeting HMGB1[J]. Vascul Pharmacol,2017,88:48-55.

[37] López-armas GC ,Yessenbekova A ,González-casta?eda RE ,et al. Role of c-miR-21,c-miR-126,redox status,and inflammatory conditions as potential predictors of vascular damage in T2DM patients[J]. Antioxidants (Basel),2022,11(9):1675.

[38] Ebrahimi V ,Rastegar-moghaddam SH ,Mohammadipour A. Therapeutic potentials of microRNA-126 in cerebral ischemia [J]. Mol Neurobiol,2023,60(4):2062-2069.

[39] Jia W ,Liu J ,Tian X ,et al. MircoRNA-126-5p inhibits apoptosis of endothelial cell in vascular arterial walls via NF-κB/PI3K/AKT/mTOR signaling?pathway in atherosclerosis[J]. J Mol Histol,2022,53(1):51-62.

[40] Fei L ,Zhang N ,Zhang J. Mechanism of miR-126 in hypoxia-reoxygenation-induced cardiomyocyte pyroptosis by regulating HMGB1 and NLRP3 inflammasome [J]. Immunopharmacol Immunotoxicol,2022,44(4):500-509.

[41] Li J ,Yang C ,Wang Y. miR?126 overexpression attenuates oxygen?glucose deprivation/reperfusion injury by inhibiting oxidative stress and inflammatory response via the activation of SIRT1/Nrf2 signaling pathway in human umbilical vein endothelial cells [J]. Mol Med Rep,2021,23(2):165.

[42] Shou X ,Wang Y ,Jiang Q ,et al. miR-126 promotes M1 to M2 macrophage phenotype switching via VEGFA and KLF4[J]. PeerJ,2023,11:e15180.

[43] Ramezani-aliakbari F ,Badavi M ,Dianat M ,et al. Trimetazidine increases plasma microRNA-24 and microRNA-126 levels and improves dyslipidemia,inflammation and hypotension in diabetic rats[J]. Iran J Pharm Res,2020,19(3):248-257.

[44] Zhang W ,Wang Y ,Kong Y. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1 [J]. Invest Ophthalmol Vis Sci,2019,60(1):294-303.

相似文献/References:

[1]张若愚,综述,殷跃辉,等.2型糖尿病及其药物对心房颤动的影响[J].心血管病学进展,2016,(4):337.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.003]
 ZHANG Ruoyu,YIN Yuehui.Effect of Type 2 Diabetes Mellitus and Diabetic Drugs on Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(3):337.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.003]
[2]黄秋瑾 胡蓉.高血压合并糖尿病患者血压控制率和控制目标的探讨[J].心血管病学进展,2019,(7):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
 HUANG QiujinHU Rong.Discussion on Blood Pressure Control Rate and Control Target in Patients with Hypertension Complicated with Diabetes[J].Advances in Cardiovascular Diseases,2019,(3):973.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.002]
[3]夏熠 刘飞 夏云龙.糖尿病合并心房颤动的相关研究进展[J].心血管病学进展,2020,(1):27.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.008]
 XIA YiLIU FeiXIA Yunlong.Research Progress in Diabetes Mellitus Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2020,(3):27.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.008]
[4]朱珊英,朱国斌.肺动脉高压发病机制新进展[J].心血管病学进展,2020,(3):292.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.019]
 ZHU Shanying,ZHU Guobin.Pathogenesis of Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2020,(3):292.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.019]
[5]菲尔凯提·玉山江李昊穆叶赛·尼加提.射血分数保留性心力衰竭合并糖尿病的研究进展[J].心血管病学进展,2020,(4):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
 FEIERKAITI·Yushanjiang,LIHao,MUYESAI.Nijiati.Heart Failure With Preserved Ejection Fraction and Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2020,(3):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
[6]张明 王敬萍.Nur77和GRP78与糖尿病心肌缺血再灌注损伤的关系研究[J].心血管病学进展,2020,(6):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
 ZHANG Ming Wang Jingping.Relationship between Nur77 and GRP78 and Myocardial Ischemia-reperfusion Injury in Diabetic Patients[J].Advances in Cardiovascular Diseases,2020,(3):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
[7]麦尔耶姆·瓦热斯 罗心平 周鹏.糖尿病与心力衰竭:2型糖尿病是心力衰竭的独立危险因素?[J].心血管病学进展,2020,(7):681.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.002]
 Maieryemu·Waresi,LUO Xinping,ZHOU Peng.Diabetes and Heart Failure: Is Type 2 Diabetes an Independent Risk Factor for Heart Failure?[J].Advances in Cardiovascular Diseases,2020,(3):681.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.002]
[8]廖丽萍 周跟东 张晓红.血清甘油三酯葡萄糖乘积指数与代谢性疾病的研究进展[J].心血管病学进展,2020,(11):1189.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
[9]高婧晗 刘飞 杨晓蕾 夏云龙.钙离子稳态的调控在糖尿病相关心房颤动中的作用[J].心血管病学进展,2021,(10):888.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.006]
 GAO Jinghan,LIU Fei,YANG Xiaolei,et al.Regulation of Calcium Homeostasis in Diabetes-Related Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2021,(3):888.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.006]
[10]杨帆 吴建军.五味子乙素通过半胱天冬酶凋亡途径对抗高糖诱导的心肌细胞氧化应激损伤[J].心血管病学进展,2022,(2):188.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.022]
 YANG Fan,WU Jianjun.Sch.B Protects High Glucose-Induced Cardiomyocytes from Oxidative Stress Injury via Caspase Pathway[J].Advances in Cardiovascular Diseases,2022,(3):188.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.022]
[11]薛佳欣 宫天宇 梁馨芳 王帆 张晓卉.糖尿病血管重构作用机制的研究进展[J].心血管病学进展,2023,(8):738.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.015]
 XUE Jiaxin,GONG Tianyu,LIANG Xinfang,et al.Advances in the Mechanism of Vascular Remodeling Action in Diabetes[J].Advances in Cardiovascular Diseases,2023,(3):738.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.015]

更新日期/Last Update: 2025-04-29