[1]刘蕊 刘永铭.肿瘤坏死因子相关凋亡诱导配体在心力衰竭中的研究进展[J].心血管病学进展,2025,(4):322.[doi:10.16806/j.cnki.issn.1004-3934.2025.04.009]
 LIU Rui,LIU Yongming.Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand in Heart Failure[J].Advances in Cardiovascular Diseases,2025,(4):322.[doi:10.16806/j.cnki.issn.1004-3934.2025.04.009]
点击复制

肿瘤坏死因子相关凋亡诱导配体在心力衰竭中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2025年4期
页码:
322
栏目:
综述
出版日期:
2025-04-25

文章信息/Info

Title:
Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand in Heart Failure
作者:
刘蕊1 刘永铭2
( 1.兰州大学第一临床医学院,甘肃 兰州 730030;2.兰州大学第一医院老年心血管科/甘肃省老年疾病临床医学研究中心,甘肃 兰州 730030)
Author(s):
LIU Rui1LIU Yongming2
(1.The First Clinical Medical College of Lanzhou University,Lanzhou 730030,Gansu,China;2.Geriatric Cardiovascular Department,The First Hospital of Lanzhou University,Gansu Provincial Clinical Research Center for Geriatric Diseases,Lanzhou 730030,Gansu,China)
关键词:
心力衰竭肿瘤坏死因子相关凋亡诱导配体细胞凋亡
Keywords:
Heart failureTumor necrosis factor-related apoptosis-inducing ligandApoptosis
DOI:
10.16806/j.cnki.issn.1004-3934.2025.04.009
摘要:
心力衰竭作为全球性的重要卫生难题,因其复杂多样的发病机制,当下临床有效的治疗方法相对匮乏。肿瘤坏死因子相关凋亡诱导配体(TRAIL)属于肿瘤坏死因子超家族,因其可通过和受体结合,选择性地介导肿瘤细胞凋亡而在肿瘤治疗领域备受关注。近些年来,研究发现TRAIL不仅能发挥抗肿瘤作用,在心力衰竭相关的心肌细胞死亡和心室重塑的过程中也发挥着重要的作用。现综述TRAIL介导的信号通路及其在心力衰竭发生发展中的作用机制,探讨TRAIL及其受体在HF临床诊治中的潜在价值,以期为心力衰竭提供新的治疗途径。
Abstract:
Heart failure,a global public health concern,has a complex and multifarious cause. At present,there are few clinical treatments available. The tumor necrosis factor superfamily’s tumor necrosis factor-related apoptosis-inducing ligand(TRAIL),has drawn extensive attention in tumor therapy for its ability to selectively induce apoptosis in tumor cells through receptor attachment. Recent studies have demonstrated that TRAIL not only exerts anti-tumor effects but also plays important biological roles in processes related to heart failure,including myocardial cell death and cardiac remodeling. This review delves into the signaling pathway mediated by TRAIL,the mechanisms of its action in the occurrence and development of heart failure,and explores the potential value of TRAIL and its receptors in the clinical diagnosis and treatment of heart failure,providing new treatments for heart failure patients

参考文献/References:

[1] Heidenreich PA,Bozkurt B,Aguilar D,et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure:A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation,2022,145(18):e895-e1032.
[2] Greene SJ,Bauersachs J,Brugts JJ,et al. Worsening heart?failure:nomenclature,epidemiology,and future directions:JACC?Review?Topic of the Week[J]. J Am Coll Cardiol,2023,81(4):413-424.
[3] Wiley SR,Schooley K,Smolak PJ,et al. Identification and characterization of a new member of the TNF family that induces apoptosis[J]. Immunity,1995,3(6):673-682.
[4] Galeone A,Grano M,Brunetti G. Tumor necrosis factor family members and myocardial ischemia-reperfusion injury:state of the art and therapeutic implications[J]. Int J Mol Sci,2023,24(5):4606.
[5] Maji A,Paul A,Sarkar A,et al. Significance of TRAIL/Apo-2 ligand and its death receptors in apoptosis and necroptosis signalling:implications for cancer-targeted therapeutics[J]. Biochem Pharmacol,2024,221:116041.
[6] Kahraman S,Yilmaz O,Altunbas HA,et al. TRAIL induces proliferation in rodent pancreatic beta cells via AKT activation[J]. J Mol Endocrinol,2021,66(4):325-338.
[7] Li J,Li X,Zhou S,et al. Tetrandrine inhibits RANKL-induced osteoclastogenesis by promoting the degradation of TRAIL[J]. Mol Med,2022,28(1):141.
[8] Cartland SP,Patil MS,Kelland E,et al. The generation of stable microvessels in ischemia is mediated by endothelial cell derived TRAIL[J]. Sci Adv,2024,10(40):eadn8760.
[9] Di Cristofano F,George A,Tajiknia V,et al. Therapeutic targeting of TRAIL death receptors[J]. Biochem Soc Trans,2023,51(1):57-70.
[10] Tian X,Srinivasan PR,Tajiknia V,et al. Targeting apoptotic pathways for cancer therapy[J]. J Clin Invest,2024,134(14):e179570.
[11] Bock FJ,Tait SWG. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol,2020,21(2):85-100.
[12] Guerrache A,Micheau O. TNF-related apoptosis-inducing ligand:non-apoptotic signalling[J]. Cells,2024,13(6):521.
[13] Pimentel JM,Zhou JY,Wu GS. The role of TRAIL in apoptosis and immunosurveillance in cancer[J]. Cancers (Basel),2023,15(10):2752.
[14] Vunnam N,Lo CH,Grant BD,et al. Soluble extracellular domain of death receptor 5 inhibits TRAIL-induced apoptosis by disrupting receptor-receptor interactions[J]. J Mol Biol,2017,429(19):2943-2953.
[15] Tanner MA,Grisanti LA. A dual role for death receptor 5 in regulating cardiac fibroblast function[J]. Front Cardiovasc Med,2021,8:699102.
[16] Hall C,Gehmlich K,Denning C,et al. Complex relationship between cardiac fibroblasts and cardiomyocytes in health and disease[J]. J Am Heart Assoc,2021,10(5):e019338.
[17] Sheng SY,Li JM,Hu XY,et al. Regulated cell death pathways in cardiomyopathy[J]. Acta Pharmacol Sin,2023,44(8):1521-1535.
[18] Grisanti LA. TRAIL and its receptors in cardiac diseases[J]. Front Physiol,2023,14:1256852.
[19] Koukorava C,Ahmed K,Almaghrabi S,et al. Anticancer drugs and cardiotoxicity:the role of cardiomyocyte and non-cardiomyocyte cells[J]. Front Cardiovasc Med,2024,11:1372817.
[20] Ushakov A,Ivanchenko V,Gagarina A. Heart failure and type 2 diabetes mellitus:neurohumoral,histological and molecular interconnections[J]. Curr Cardiol Rev,2023,19(2):e170622206132.
[21] He W,Zhou L,Xu K,et al. Immunopathogenesis and immunomodulatory therapy for myocarditis[J]. Sci China Life Sci,2023,66(9):2112-2137.
[22] Guo X,Chen Y,Liu Q. Necroptosis in heart disease:molecular mechanisms and therapeutic implications[J]. J Mol Cell Cardiol,2022,169:74-83.
[23] Ceelen D,Voors AA,Tromp J,et al. Pathophysiological pathways related to high plasma growth differentiation factor 15 concentrations in patients with heart failure[J]. Eur J Heart Fail,2022,24(2):308-320.
[24] Dutka M,Bobiński R,Wojakowski W,et al. Osteoprotegerin and RANKL-RANK-OPG-TRAIL signalling axis in heart failure and other cardiovascular diseases[J]. Heart Fail Rev,2022,27(4):1395-1411.
[25] Schirone L,Forte M,Palmerio S,et al. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling[J]. Oxid Med Cell Longev,2017,2017:3920195.
[26] Akhtar SMM,Ali A,Fareed A,et al. Osteoprotegerin (OPG):a potential biomarker for adverse cardiovascular events in stable coronary artery disease[J]. Health Sci Rep,2024,7(7):e2253.
[27] Karhunen V,Gill D,Huang J,et al. The interplay between inflammatory cytokines and cardiometabolic disease:bi-directional mendelian randomisation study[J]. BMJ Med,2023,2(1):e000157.
[28] Kakareko K,Rydzewska-Roso?owska A,Zbroch E,et al. TRAIL and cardiovascular disease-a risk factor or risk marker:a systematic review[J]. J Clin Med,2021,10(6):1252.
[29] Kelland E,Patil MS,Patel S,et al. The prognostic,diagnostic,and therapeutic potential of TRAIL signalling in cardiovascular diseases[J]. Int J Mol Sci,2023,24(7):6725.
[30] Kuang N,Shu B,Yang F,et al. TRAIL or TRAIL-R2 as a predictive biomarker for mortality or cardiovascular events:a systematic review and meta-analysis[J]. J Cardiovasc Pharmacol,2023,81(5):348-354.
[31] Jankowski J,Kozub KO,Kleibert M,et al. The role of programmed types of cell death in pathogenesis of heart failure with preserved ejection fraction[J]. Int J Mol Sci,2024,25(18):9921.
[32] Engel S?llberg A,Helleberg S,Ahmed S,et al. Plasma tumour necrosis factor-alpha-related proteins in prognosis of heart failure with pulmonary hypertension[J]. ESC Heart Fail,2023,10(6):3582-3591.
[33] Wang Y,Zhang H,Wang Z,et al. Blocking the death checkpoint protein TRAIL improves cardiac function after myocardial infarction in monkeys,pigs,and rats[J]. Sci Transl Med,2020,12(540):eaaw3172.
[34] Wang M,Wei Y,Wang X,et al. TRAIL inhibition by soluble death receptor 5 protects against acute myocardial infarction in rats[J]. Heart Vessels,2023,38(3):448-458.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(4):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(4):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(4):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(4):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(4):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
 GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(4):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(4):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
 WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(4):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]

备注/Memo

备注/Memo:
收稿日期:2024-08-27基金项目:甘肃省科技厅重点研发计划(20YF8FA079)
更新日期/Last Update: 2025-05-16