[1]俞成云 芦秀燕 张铭 杜招娜 夏伟.非对称性二甲基精氨酸与活性氧在内皮功能障碍中的作用机制研究进展[J].心血管病学进展,2025,(2):153.[doi:10.16806/j.cnki.issn.1004-3934.2025.02.013]
 YU Chengyun,LU Xiuyan,ZHANG Ming,et al.Role and Mechanism of Asymmetric Dimethylarginine and Reactive Oxygen Species in Endothelial Dysfunction[J].Advances in Cardiovascular Diseases,2025,(2):153.[doi:10.16806/j.cnki.issn.1004-3934.2025.02.013]
点击复制

非对称性二甲基精氨酸与活性氧在内皮功能障碍中的作用机制研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2025年2期
页码:
153
栏目:
综述
出版日期:
2025-02-25

文章信息/Info

Title:
Role and Mechanism of Asymmetric Dimethylarginine and Reactive Oxygen Species in Endothelial Dysfunction
作者:
俞成云1 芦秀燕 2 张铭 1 杜招娜 1 夏伟 2
(1.山东第二医科大学临床医学院,山东 潍坊 261053;2.康复大学青岛医院青岛市市立医院东院区心内一科,山东 青岛 266000)
Author(s):
YU Chengyun1LU Xiuyan2ZHANG Ming1DU Zhaona1XIA Wei2
(1.School of Clinical Medicine,Shandong Second Medical University,Weifang 261053,Shandong,China2.Qingdao Hospital of Rehabilitation University,Department of Cardiology,East Hospital of Qingdao Municipal Hospital,Qingdao 266000,Shandong,China)
关键词:
内皮功能障碍一氧化氮非对称性二甲基精氨酸活性氧
Keywords:
Endothelial dysfunctionNitric oxideAsymmetric dimethylarginineReactive oxygen species
DOI:
10.16806/j.cnki.issn.1004-3934.2025.02.013
摘要:
内皮功能障碍是心血管疾病的早期特征,通常被定义为一氧化氮生物利用度降低。非对称性二甲基精氨酸作为一氧化氮合成的天然抑制剂,其血浆浓度升高近些年一直被视为内皮功能障碍的独立危险因素。生理状况下,活性氧与一氧化氮保持合成平衡,共同参与内皮屏障维护,其平衡破坏介导的内皮功能障碍是多种心血管疾病发生进展的病理生理机制之一。现主要对非对称性二甲基精氨酸与活性氧在内皮功能障碍中的作用机制及争议进行综述,以期为心血管疾病的预防和治疗提供新思路。
Abstract:
Endothelial dysfunction is an early feature of cardiovascular disease and is often defined as reduced nitric oxide bioavailability. Asymmetric dimethylarginine is a natural inhibitor of nitric oxide synthesis,and its elevated plasma concentration has been implicated as an independent risk factor for endothelial dysfunction in recent years. At physiological conditions,reactive oxygen species and nitric oxide maintain a synthetic balance and participate in the maintenance of endothelial barrier,when their balanc is destroyed,it can directly lead to endothelial dysfunction,which is one of the pathophysiological mechanisms of the occurrence and progression of various cardiovascular diseases. In this article,we mainly review the mechanism and controversy of asymmetric dimethylarginine and reactive oxygen species in endothelial dysfunction. In order to provide new ideas for the prevention and treatment of cardiovascular diseases

参考文献/References:

[1]Xu S,Ilyas I,Little PJ,et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond:from mechanism to pharmacotherapies[J]. Pharmacol Rev,2021,73(3):924-967.

[2]Dowsett L,Higgins E,Alanazi S,et al. ADMA:a key player in the relationship between vascular dysfunction and inflammation in atherosclerosis[J]. J Clin Med,2020,9(9):3026.

[3]Barvitenko N,Skverchinskaya E,Lawen A,et al. Pleiotropic and potentially beneficial effects of reactive oxygen species on the intracellular signaling pathways in endothelial cells[J]. Antioxidants (Basel) ,2021,10(6):904.

[4]Tain YL,Hsu CN. Targeting on asymmetric dimethylarginine-related nitric oxide-reactive oxygen species imbalance to reprogram the development of hypertensions[J]. Int J Mol Sci,2016,17(12):2020.

[5]Barros CDS,Livramento JB,Mouro MG,et al. L-arginine reduces nitro-oxidative stress in cultured cells with mitochondrial deficiency[J]. Nutrients,2021,13(2):534.

[6]Janaszak-Jasiecka A,Siekierzycka A,P?oska A,et al. Endothelial dysfunction driven by hypoxia—The influence of oxygen deficiency on NO bioavailability[J]. Biomolecules,2021,11(7):982.

[7]Jarzebska N,Mangoni AA,Martens-Lobenhoffer J,et al. The second life of methylarginines as cardiovascular targets[J]. Int J Mol Sci,2019,20(18):4592.

[8]Chafai A,Fromm MF,K?nig J,et al. The prognostic biomarker L-homoarginine is a substrate of the cationic amino acid transporters CAT1,CAT2A and CAT2B[J]. Sci Rep,2017,7(1):4767.

[9]Mohan S,Fung HL. Mechanism of cellular oxidation stress induced by asymmetric dimethylarginine[J]. Int J Mol Sci,2012,13(6):7521-7531.

[10]Shin S,Thapa SK,Fung HL. Cellular interactions between L-arginine and asymmetric dimethylarginine:transport and metabolism[J]. PLoS One,2017,12(5):e0178710.

[11]Liang XX,Wang RY,Guo YZ,et al. Phosphorylation of Akt at Thr308 regulates p-eNOS Ser1177 during physiological conditions[J]. FEBS Open Bio,2021,11(7):1953-1964.

[12]Liu X,Xu X,Shang R,et al. Asymmetric dimethylarginine (ADMA) as an important risk factor for the increased cardiovascular diseases and heart failure in chronic kidney disease[J]. Nitric Oxide,2018,78:113-120.

[13]Tsikas D. GC-MS and GC-MS/MS measurement of malondialdehyde (MDA) in clinical studies:pre-analytical and clinical considerations[J]. J Mass Spectrom Adv Clin Lab,2023,30:10-24.

[14]Tsikas D. Does the inhibitory action of asymmetric dimethylarginine (ADMA) on the endothelial nitric oxide synthase activity explain its importance in the cardiovascular system? The ADMA paradox[J]. J Controversies Biomed Res,2017,3(1):16-22.

[15]Janaszak-Jasiecka A,P?oska A,Wierońska JM,et al. Endothelial dysfunction due to eNOS uncoupling:molecular mechanisms as potential therapeutic targets[J]. Cell Mol Biol Lett,2023,28(1):21.

[16]Caldwell RW,Rodriguez PC,Toque HA,Narayanan SP,Caldwell RB. Arginase:a multifaceted enzyme important in health and disease[J]. Physiol Rev,2018,98(2):641-665.

[17]Ismaeel A,Papoutsi E,Miserlis D,et al. The nitric oxide system in peripheral artery disease:connection with oxidative stress and biopterins[J]. Antioxidants (Basel),2020,9(7):590.

[18]Wang Y,Zhang P,Xu Z,et al. S-nitrosylation of PDE5 increases its ubiquitin-proteasomal degradation[J]. Free Radic Biol Med,2015,86:343-351.

[19]Ragavan VN,Nair PC,Jarzebska N,et al. A multicentric consortium study demonstrates that dimethylarginine dimethylaminohydrolase 2 is not a dimethylarginine dimethylaminohydrolase[J]. Nat Commun,2023,14(1):3392.

[20]Zinellu A,Fois AG,Mangoni AA,et al. Systemic concentrations of asymmetric dimethylarginine (ADMA) in chronic obstructive pulmonary disease (COPD):state of the art[J]. Amino Acids,2018,50(9):1169-1176.

[21]Xiong Y,He YL,Li XM,et al. Endogenous asymmetric dimethylarginine accumulation precipitates the cardiac and mitochondrial dysfunctions in type 1 diabetic rats[J]. Eur J Pharmacol,2021,902:174081.

[22]Luo Y,Yue W,Quan X,et al. Asymmetric dimethylarginine exacerbates Aβ-induced toxicity and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease[J]. Free Radic Biol Med,2015,79:117-126.

[23]Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation[J]. Physiol Rev,2019,99(1):311-379.

[24]Gambardella J,Khondkar W,Morelli MB,et al. Arginine and endothelial function[J]. Biomedicines,2020,8(8):277.

[25]Menzel D,Haller H,Wilhelm M,et al. L-arginine and B vitamins improve endothelial function in subjects with mild to moderate blood pressure elevation[J]. Eur J Nutr,2018,57(2):557-568.

[26]Argaev-Frenkel L,Rosenzweig T. Redox balance in type 2 diabetes:therapeutic potential and the challenge of antioxidant-based therapy[J]. Antioxidants (Basel),2023,12(5):994.

[27]Doman AJ,Tommasi S,Perkins MV,et al. Chemical similarities and differences among inhibitors of nitric oxide synthase,arginase and dimethylarginine dimethylaminohydrolase-1:implications for the design of novel enzyme inhibitors modulating the nitric oxide pathway[J]. Bioorg Med Chem,2022,72:116970.

[28]Lee Y,Singh J,Scott SR,et al. A recombinant dimethylarginine dimethylaminohydrolase-1-based biotherapeutics to pharmacologically lower asymmetric dimethyl arginine,thus improving postischemic cardiac function and cardiomyocyte mitochondrial activity[J]. Mol Pharmacol,2022,101(4):226-235.

[29]Farr S,Stankovic B,Hoffman S,et al. Bile acid treatment and FXR agonism lower postprandial lipemia in mice[J]. Am J Physiol Gastrointest Liver Physiol,2020,318(4):G682-G693.

[30]Zhang X,Zheng Y,Wang Z,et al. Melatonin as a therapeutic agent for alleviating endothelial dysfunction in cardiovascular diseases:emphasis on oxidative stress[J]. Biomed Pharmacother,2023,167:115475.

[31]Forman HJ,Zhang H. Targeting oxidative stress in disease:promise and limitations of antioxidant therapy[J]. Nat Rev Drug Discov,2021,20(9):689-709.

[32]Liao J,Lai Z,Huang G,et al. Setanaxib mitigates oxidative damage following retinal ischemia-reperfusion via NOX1 and NOX4 inhibition in retinal ganglion cells[J]. Biomed Pharmacother,2024,170:116042.

[33]Chen C,Zhao JF,Hsu CP,et al. The detrimental effect of asymmetric dimethylarginine on cholesterol efflux of macrophage foam cells:role of the NOX/ROS signaling[J]. Free Radic Biol Med,2019,143:354-365.

[34]Wang C,Luo Z,Carter G,et al. NRF2 prevents hypertension,increased ADMA,microvascular oxidative stress,and dysfunction in mice with two weeks of Ang Ⅱ infusion[J]. Am J Physiol Regul Integr Comp Physiol,2018,314(3):R399-R406.

相似文献/References:

[1]张淼 魏冠平 黄煜 何庆.模拟急性高原缺氧对小鼠一氧化氮相关通路的影响[J].心血管病学进展,2020,(9):984.[doi:10.16806/j.cnki.issn.1004-3934.20.09.023]
 ZHANG Miao,WEI Guanping,HUANG Yu,et al.Effect of Simulated Acute High Altitude Hypoxia on Nitric Oxide-related Pathways in Mice[J].Advances in Cardiovascular Diseases,2020,(2):984.[doi:10.16806/j.cnki.issn.1004-3934.20.09.023]
[2]于博文 修成奎 王雪 杨静 雷燕.内皮微粒在临床中的研究进展及应用[J].心血管病学进展,2021,(1):76.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 YU Bowen,XIU Chengkui,WANG Xue,et al.Research Progress and Application of Endothelial Microparticles in Clinic[J].Advances in Cardiovascular Diseases,2021,(2):76.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[3]马淑青 唐其柱.氧化应激在脓毒症心肌病中的研究进展[J].心血管病学进展,2021,(2):118.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.006]
 MA Shuqing,TANG Qizhu.Role of Oxidative Stress in Septic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(2):118.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.006]
[4]石玉姣 熊双 刘春秋 杨晨光 董国菊 刘剑刚.射血分数保留性心力衰竭潜在的分子机制及治疗靶点[J].心血管病学进展,2022,(5):423.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.010]
 SHI Yujiao,XIONG Shuang,LIU Chunqiu,et al.Potential Molecular Mechanisms and Therapeutic Target in Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2022,(2):423.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.010]
[5]杜明亮 王泊然 惠慧 郑晓群.冠状动脉微循环功能障碍临床研究进展[J].心血管病学进展,2023,(8):699.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.007]
 DU Mingliang,WANG Boran,HUI Hui,et al.Clinical Research Progress of Coronary Microcirculation Dysfunction[J].Advances in Cardiovascular Diseases,2023,(2):699.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.007]
[6]付亚萌 张光明.内质网应激与内皮功能障碍关系及临床治疗研究进展[J].心血管病学进展,2024,(3):243.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.012]
 FU YamengZHANG Guangming.Research progress on the relationship between endoplasmic reticulum stress and endothelial dysfunction and its clinical treatment[J].Advances in Cardiovascular Diseases,2024,(2):243.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.012]

更新日期/Last Update: 2025-03-11