[1]施逸 武立达 张俊霞.白藜芦醇防治糖尿病心肌病作用机制的研究进展[J].心血管病学进展,2024,(11):993.[doi:10.16806/j.cnki.issn.1004-3934.2024.11.008]
 SHI Yi,WU Lida,ZHANG Junxia.Effect and Mechanism of Resveratrol in the Prevention and Treatment of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2024,(11):993.[doi:10.16806/j.cnki.issn.1004-3934.2024.11.008]
点击复制

白藜芦醇防治糖尿病心肌病作用机制的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年11期
页码:
993
栏目:
综述
出版日期:
2024-11-25

文章信息/Info

Title:
Effect and Mechanism of Resveratrol in the Prevention and Treatment of Diabetic Cardiomyopathy
作者:
施逸 武立达 张俊霞
(南京医科大学附属南京医院 南京市第一医院 心血管内科 ,南京 210006)
Author(s):
SHI Yi WU Lida ZHANG Junxia
(Department of Cardiology,Nanjing First Hospital,Nanjing First Hospital Affiliated to Nanjing Medical University,Nanjing 210006 ,China)
关键词:
糖尿病心肌病白藜芦醇作用机制
Keywords:
Diabetic cardiomyopathy Resveratrol Effect and mechanism
DOI:
10.16806/j.cnki.issn.1004-3934.2024.11.008
摘要:
糖尿病心肌病(DCM)是严重的糖尿病心血管并发症,其发病机制主要是糖尿病导致的心脏结构改变与功能异常。DCM早期仅表现为心脏部分结构改变,但功能仍可代偿,晚期则可发展为心力衰竭。白藜芦醇是一种天然的多酚类化合物,具有调控糖代谢、氧化应激、炎症、自噬等作用,对于防治DCM具有潜在的应用前景。为深入了解白藜芦醇防治DCM的作用及机制,现对相关研究进行综述,以期为临床防治DCM提供理论依据。
Abstract:
Diabetic cardiomyopathy (DCM) represents a severe cardiovascular complication of diabetes,primarily driven by structural alterations and functional abnormalities in the heart induced by diabetes. In the initial stages of DCM ,partial structural alterations in the heart are manifested,but the cardiac function remains compensatory,while in the later stages,it can progress to heart failure. Resveratrol is a natural polyphenolic compound that can regulate glucose metabolism ,oxidative stress,inflammation,and autophagy,offering potential application prospect?for the prevention and treatment of DCM . In order to further understand the effect and mechanism of resveratrol in the prevention and treatment of DCM ,this article reviewed relevant studies,aiming to establish a theoretical foundation for clinical management of DCM.

参考文献/References:

[1] Wang L,Peng W,Zhao Z,et al. Prevalence and treatment of diabetes in China,2013-2018[J]. JAMA,2021,326(24):2498-2506.

[2] Wei J,Zhao Y,Liang H,et al. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy[J]. Acta Pharm Sin B,2022,12(1):1-17.

[3] 王一硕,罗皓文,王晨旭,等. 线粒体动力学在糖尿病心肌病中的研究进展[J]. 心血管病学进展,2023,44(12):1111-1115.

[4] EL Hayek MS,Ernande L,Benitah JP,et al. The role of hyperglycaemia in the development of diabetic cardiomyopathy[J]. Arch Cardiovasc Dis,2021,114(11):748-760.

[5] Hou CY,Tain YL,Yu HR,et al. The effects of resveratrol in the treatment of metabolic syndrome[J]. Int J Mol Sci,2019,20(3):535.

[6]Song,YJ,Zhong CB,Wu,W,et al. Resveratrol and diabetic cardiomyopathy:focusing on the protective signaling mechanisms[J]. Oxid Med Cell Longev ,2020,2020:7051845.

[7] Jin L ,Geng L ,Ying L,et al. FGF21-sirtuin 3 axis confers the protective effects of exercise against diabetic cardiomyopathy by governing mitochondrial integrity[J]. Circulation,2022,146(20):1537-1557.

[8] Westermeier F,Riquelme JA,Pavez M,et al. New Molecular Insights of Insulin in Diabetic Cardiomyopathy[J]. Front Physiol,2016,7:125.

[9]Jia G,DeMarco VG,Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy[J]. Nat Rev Endocrinol,2016,12(3):144-153.

[10]Li Z,Shi Y,Xia Y,et al. Disparate Clinical Characteristics and Prognosis of HFpEF versus HFrEF Phenotype of Diabetic Cardiomyopathy[J]. J Clin Med,2023,12(4):1565.

[11] Brereton MF,Rohm M,Shimomura K,et al. Hyperglycaemia induces metabolic dysfunction and glycogen accumulation in pancreatic β-cells[J]. Nat Commun,2016,7:13496.

[12]Byrne NJ,Rajasekaran NS,Abel ED,et al. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy[J]. Free Radic Biol Med,2021,169:317-342.

[13]Wang J,Tang Z,Zhang Y,et al. Matrine alleviates AGEs- induced cardiac dysfunctions by attenuating calcium overload via reducing ryanodine receptor 2 activity[J]. Eur J Pharmacol,2019,842:118-124.

[14] Tian CJ,Zhang JH,Liu J,et al. Ryanodine receptor and immune-related molecules in diabetic cardiomyopathy[J]. ESC Heart Fail,2021,8(4):2637-2646.

[15]James DE,St?ckli J,Birnbaum MJ. The aetiology and molecular landscape of insulin resistance[J]. Nat Rev Mol Cell Biol,2021,22(11):751-771.

[16] Peng C,Zhang Y,Lang X,et al. Role of mitochondrial metabolic disorder and immune infiltration in diabetic cardiomyopathy:new insights from bioinformatics analysis[J]. J Transl Med,2023,21(1):66.

[17] Galiniak S,Aebisher D,Bartusik-Aebisher D. Health benefits of resveratrol administration[J]. Acta Biochim Pol,2019,66(1):13-21.

[18]Lu C,Xing H,Yang L,et al. Resveratrol ameliorates high-fat-diet-induced abnormalities in hepatic glucose metabolism in mice via the AMP-activated protein kinase pathway[J]. Evid Based Complement Alternat Med,2021,2021:6616906.

[19] Vlavcheski F ,Den Hartogh DJ,Giacca A,et al. Amelioration of high-insulin-induced skeletal muscle cell insulin resistance by resveratrol is linked to activation of AMPK and restoration of GLUT4 translocation[J]. Nutrients,2020,12(4):914.

[20] González-Rodríguez ?,Santamaría B,Mas-Gutierrez JA,et al. Resveratrol treatment restores peripheral insulin sensitivity in diabetic mice in a sirt1-independent manner[J]. Mol Nutr Food Res,2015,59(8):1431-1442.

[21]Zeraattalab-Motlagh S,Jayedi A,Shab-Bidar S. The effects of resveratrol supplementation in patients with type 2 diabetes,metabolic syndrome,and nonalcoholic fatty liver disease:an umbrella review of meta-analyses of randomized controlled trials[J]. Am J Clin Nutr,2021,114(5):1675-1685.

[22]Springer M,Moco S. Resveratrol and its human metabolites-effects on metabolic health and obesity[J]. Nutrients,2019,11(1):143.

[23]Sun H,Liu X,Long SR,et al. Antidiabetic effects of pterostilbene through PI3K/Akt signal pathway in high fat diet and STZ-induced diabetic rats[J]. Eur J Pharmacol,2019,859:172526.

[24] Ardid-Ruiz A,Ibars M,Mena P,et al. Potential involvement of peripheral leptin/STAT3 signaling in the effects of resveratrol and its metabolites on reducing body fat accumulation[J]. Nutrients,2018,10(11):1757.

[25] Peng ML,Fu Y,Wu CW,et al. Signaling pathways related to oxidative stress in diabetic cardiomyopathy[J]. Front Endocrinol (Lausanne),2022,13:907757.

[26] Guo S,Yao Q,Ke Z,et al. Resveratrol attenuates high glucose-induced oxidative stress and cardiomyocyte apoptosis through AMPK[J]. Mol Cell Endocrinol,2015,412:85-94.

[27] Bagul PK,Deepthi N,Sultana,et al. Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFkB-p65 and histone 3[J]. J Nutr Biochem,2015,26(11):1298-1307.

[28] Wang G,Song X,Zhao L,et al. Resveratrol prevents diabetic cardiomyopathy by increasing Nrf2 expression and transcriptional activity[J]. Biomed Res Int,2018,2018:2150218.

[29] Wu H,Li GN,Xie J,et al. Resveratrol ameliorates myocardial fibrosis by inhibiting ROS/ERK/TGF-β/periostin pathway in STZ-induced diabetic mice[J]. BMC Cardiovasc Disord,2016,16:5.

[30]Lontchi-Yimagou E,Sobngwi E,Matsha TE,et al. Diabetes mellitus and inflammation[J]. Curr Diab Rep,2013,13(3):435-444.

[31] Wu H,Chen Z,Xie J,et al. High mobility group box-1:a missing link between diabetes and its complications[J] Mediators Inflamm ,2016;2016:3896147.

[32] Gao Y,Kang L,Li C,et al. Resveratrol ameliorates diabetes-induced cardiac dysfunction through AT1R-ERK/p38 MAPK signaling pathway[J]. Cardiovasc Toxicol,2016,16(2):130-137.

[33] Luo B,Li B,Wang W,et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model[J]. PLoS One,2014,9(8):e104771.

[34] Li A,Zhang S,Li J,et al. Metformin and resveratrol inhibit Drp1-mediated mitochondrial fission and prevent ER stress-associated NLRP3 inflammasome activation in the adipose tissue of diabetic mice[J]. Mol Cell Endocrinol,2016,434:36-47.

[35]Mahjabeen W,Khan DA,Mirza SA. Role of resveratrol supplementation in regulation of glucose hemostasis,inflammation and oxidative stress in patients with diabetes mellitus type 2:a randomized,placebo-controlled trial[J]. Complement Ther Med,2022,66:102819.

[36] Mialet-Perez J,Vindis C.. Autophagy in health and disease:focus on the cardiovascular system[J]. Essays Biochem,2017,61(6):721-732.

[37] Wang B,Yang Q,Sun YY,et al. Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice[J]. J Cell Mol Med,2014,18(8):1599-1611.

[38] Xu K,Liu XF,Ke ZQ,et al. Resveratrol modulates apoptosis and autophagy induced by high glucose and palmitate in cardiac cells[J]. Cell Physiol Biochem,2018,46(5):2031-2040.

相似文献/References:

[1]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
 WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(11):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[2]杨沫,姜文锡.线粒体功能异常在糖尿病心肌病发病机制中的作用[J].心血管病学进展,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
 YANG Mo,JIANG Wenxi.Mitochondrial Dysfunction of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(11):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
[3]朱月红,戴启明.糖尿病心肌病的内质网病变机制及干预[J].心血管病学进展,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
 ZHU Yuehong,DAI Qiming.Advance of Mechanism and Intervention of Endoplasmic Reticulum in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(11):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
[4]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(11):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[5]武韧 常贵全 孙凤起 李鸿珠.硫化氢对糖尿病心肌病的保护作用[J].心血管病学进展,2021,(1):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 WU Ren,CHANG Guiquan,SUN Fengqi,et al.Protective Effect of Hydrogen Sulfide in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(11):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[6]宋元秀 崔鸣.线粒体动力学异常与相关心血管疾病[J].心血管病学进展,2021,(2):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 SONG Yuanxiu,CUI Ming.Correlation Between Mitochondrial Dynamics and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(11):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]马韵之 李剑 周鹏.糖尿病心肌病血清生物标志物研究进展[J].心血管病学进展,2021,(5):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
 Serum Biomarkers of Diabetic Cardiomyopathy.[J].Advances in Cardiovascular Diseases,2021,(11):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
[8]李艳鹏 马依彤.糖尿病心肌病治疗策略的研究进展[J].心血管病学进展,2022,(9):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
 LI Yanpeng,MA Yitong.Treatment Strategies for Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2022,(11):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
[9]曹兴丹 陈子仪 宋小刚 张玉秀 陈敏 汤吉超 李萍萍 陈永清 荆哲.EMRE在高糖环境中的变化对心肌细胞凋亡机制的研究[J].心血管病学进展,2022,(10):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
 CAO XingdanCHEN ZiyiSONG XiaogangZHANG YuxiuCHEN MinTANG JichaoLI PingpingCHEN YongqingJING Zhe.Effect of High Glucose-Induced EMRE Expressions Changes on?yocardial Apoptosis[J].Advances in Cardiovascular Diseases,2022,(11):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
[10]林佳音 王莉莉 于小晴.胰高血糖素样肽-1受体激动剂对糖尿病心肌病的影响[J].心血管病学进展,2023,(11):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]
 LIN Jiayin,WANG Lili,YU Xiaoqing.Effect of Glucagon-Like Peptide-1 Receptor Agonist on Diabetes Cardiomyopathy[J].Advances in Cardiovascular Diseases,2023,(11):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]

更新日期/Last Update: 2024-12-02