[1]热伊莱·开赛尔 谢翔.琥珀酸在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2024,(8):722.[doi:10.16806/j.cnki.issn.1004-3934.202.08.011]
 Reyilai·Kaisaier,XIE Xiang.Succinic Acid and Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2024,(8):722.[doi:10.16806/j.cnki.issn.1004-3934.202.08.011]
点击复制

琥珀酸在心肌缺血再灌注损伤中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年8期
页码:
722
栏目:
综述
出版日期:
2024-08-25

文章信息/Info

Title:
Succinic Acid and Myocardial Ischemia-Reperfusion Injury
作者:
热伊莱·开赛尔 谢翔
(新疆医科大学第一附属医院心脏中心,新疆 乌鲁木齐 830054)
Author(s):
Reyilai·KaisaierXIE Xiang
(Department of Cardiology,First Affiliated Hospital of Xinjiang Medical University,Urumqi 830054,Xinjiang,China)
关键词:
琥珀酸心肌缺血再灌注损伤治疗靶点
Keywords:
Succinic acidMyocardial Ischemia-Reperfusion InjuryTherapeutic target
DOI:
10.16806/j.cnki.issn.1004-3934.202.08.011
摘要:
心肌缺血再灌注损伤(MIRI)是指缺血心肌恢复正常灌注后,细胞或组织的结构损伤和功能障碍反而呈进行性加重的病理生理现象,可引发恶性心律失常、心力衰竭甚至会导致猝死。因此,降低再灌注对缺血心肌的损害已成为亟待解决的问题。琥珀酸是三羧酸循环的中间代谢产物,最近研究发现,心肌缺血组织中琥珀酸含量显著增加,并在再灌注过程中可通过氧化应激、能量代谢障碍、免疫炎症等机制参与MIRI的发生与发展。琥珀酸作为新型循环标志物渴望为MIRI的防治提供新思路。现对琥珀酸在MIRI中的作用机制及靶向治疗研究进展进行了综述,以期对预防MIRI有借鉴意义。
Abstract:
Myocardial ischemia-reperfusion injury (MIRI) is a pathophysiological phenomenon in which the structural damage and dysfunction of cells and tissues are progressively aggravated after ischemic myocardium is restored to normal perfusion,which can lead to malignant arrhythmia,heart failure and even sudden death. Therefore,reducing the damage of reperfusion to ischemic myocardium has become an urgent problem. Succinate is an intermediate metabolite of the tricarboxylic acid cycle,and recent studies have found that the succinate concentration in myocardial ischemic tissues is significantly increased,and involves oxidative stress,impaired energy metabolism,immunoinflammation in the process of MIRI. In this paper,the mechanism of succinate in MIRI and the progress of targeted therapeutic research are summarized,in order to be useful for the prevention of MIRI

参考文献/References:

[1] GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories,1990-2019:a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancent,2020,396(10258):1204-1222.
[2] Liu NB,Wu M,Chen C,et al. Novel molecular targets participating in myocardial ischemia-reperfusion injury and cardioprotection[J]. Cardiol Res Pract,2019,2019:6935147.
[3] Zhang W,Lang R. Succinate metabolism:a promising therapeutic target for inflammation,ischemia/reperfusion injury and cancer[J]. Front Cell Dev Biol,2023,11:1266973.
[4] Zhang J,Wang YT,Miller JH,et al. Accumulation of succinate in cardiac ischemia primarily occurs via canonical Krebs cycle activity[J]. Cell Rep,2018,23(9):2617-2628.
[5] Chouchani ET,Pell VR,Gaude E,et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS[J]. Nature,2014,515(7527):431-435.
[6] Prag HA,Gruszczyk AV,Huang MM,et al. Mechanism of succinate efflux upon reperfusion of the ischaemic heart[J]. Cardiovasc Res,2021,117(4):1188-1201.
[7] Choi I,Son H,Baek JH. Tricarboxylic acid (TCA) cycle intermediates:regulators of immune responses[J]. Life(Basel),2021,11(1):69.
[8] Murphy MP,O’Neill LAJ. Krebs cycle reimagined:the emerging roles of succinate and itaconate as signal transducers[J]. Cell,2018,174(4):780-784.
[9] Serena C,Ceperuelo-Mallafré V,Keiran N,et al. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota[J]. ISME J,2018,12(7):1642-1657.
[10] Fremder M,Kim SW,Khamaysi A,et al. A transepithelial pathway delivers succinate to macrophages,thus perpetuating their pro-inflammatory metabolic state[J]. Cell Rep,2021,36(6):109521.
[11] Krzak G,Willis CM,Smith JA,et al. Succinate receptor 1:an emerging regulator of myeloid cell function in inflammation[J]. Trends Immunol,2021,42(1):45-58.
[12] Gilissen J,Jouret F,Pirotte B,et al. Insight into SUCNR1 (GPR91) structure and function[J]. Pharmacol Ther,2016,159:56-65.
[13] Zhang S,Liang Y,Li L,et al. Succinate:a novel mediator to promote atherosclerotic lesion progression[J]. DNA Cell Biol,2022,41(3):285-291.
[14] Vargas SL,Toma I,Kang JJ,et al. Activation of the succinate receptor GPR91 in macula densa cells causes renin release[J]. J Am Soc Nephrol,2009,20(5):1002-1011.
[15] Li J,Yang YL,Li LZ,et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways:therapeutic effects of ginsenoside Rb1[J]. Biochim Biophys Acta Mol Basis Dis,2017,1863(11):2835-2847.
[16] Wu KK. Extracellular Succinate:A physiological messenger and a pathological trigger[J]. Int J Mol Sci,2023,24(13):11165.
[17] Fernández-Veledo S,Ceperuelo-Mallafré V,Vendrell J. Rethinking succinate:an unexpected hormone-like metabolite in energy homeostasis[J]. Trends Endocrinol Metab,2021,32(9):680-692.
[18] Xu J,Zheng Y,Zhao Y,et al. Succinate/IL-1β signaling axis promotes the inflammatory progression of endothelial and exacerbates atherosclerosis[J]. Front Immunol,2022,13:817572.
[19] Kohlhauer M,Dawkins S,Costa ASH,et al. Metabolomic profiling in acute ST-segment-elevation myocardial infarction identifies succinate as an early marker of human ischemia-reperfusion injury[J]. J Am Heart Assoc,2018,7(8):e007546.
[20] Chouchani ET,Pell VR,James AM,et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury[J]. Cell Metab,2016,23(2):254-263.
[21] Adameova A,Horvath C,Abdul-Ghani S,et al. Interplay of oxidative stress and necrosis-like cell death in cardiac ischemia/reperfusion injury:a focus on necroptosis[J]. Biomedicines,2022,10(1):127.
[22] Forte M,Schirone L,Ameri P,et al. The role of mitochondrial dynamics in cardiovascular diseases[J]. Br J Pharmacol,2021,178(10):2060-2076.
[23] Lu YT,Li LZ,Yang YL,et al. Succinate induces aberrant mitochondrial fission in cardiomyocytes through GPR91 signaling[J]. Cell Death Dis,2018,9(6):672.
[24] Algoet M,Janssens S,Himmelreich U,et al. Myocardial ischemia-reperfusion injury and the influence of inflammation[J]. Trends Cardiovasc Med,2023,33(6):357-366.
[25] Mills EL,Kelly B,Logan A,et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages[J]. Cell,2016,167(2):457-470.e13.
[26] 章舒蕾梁亚敏罗涔方,等. 琥珀酸通过活性氧途径诱导人脐静脉内皮细胞焦亡[J]. 中国动脉硬化杂志2021,29(1):42-47.
[27] Prag HA,Aksentijevic D,Dannhorn A,et al. Ischemia-selective cardioprotection by malonate for ischemia/reperfusion injury[J]. Circ Res,2022,131(6):528-541.
[28] Prag HA,Pala L,Kula-Alwar D,et al. Ester prodrugs of malonate with enhanced intracellular delivery protect against cardiac ischemia-reperfusion injury in vivo[J]. Cardiovasc Drugs Ther,2022,36(1):1-13.
[29] Fernandez-Gomez FJ,Galindo MF,Gómez-Lázaro M,et al. Malonate induces cell death via mitochondrial potential collapse and delayed swelling through an ROS-dependent pathway[J]. Br J Pharmacol,2005,144(4):528-537.
[30] Valls-Lacalle L,Barba I,Miró-Casas E,et al. Selective inhibition of succinate dehydrogenase in reperfused myocardium with intracoronary malonate reduces infarct size[J]. Sci Rep,2018,8(1):2442.
[31] Milliken AS,Nadtochiy SM,Brookes PS. Inhibiting succinate release worsens cardiac reperfusion injury by enhancing mitochondrial reactive oxygen species generation[J]. J Am Heart Assoc,2022,11(13):e026135.
[32] Bonaventura A,Montecucco F,Dallegri F. Cellular recruitment in myocardial ischaemia/reperfusion injury[J]. Eur J Clin Invest,2016,46(6):590-601.
[33] Zuidema MY,Zhang C. Ischemia/reperfusion injury:the role of immune cells[J]. World J Cardiol,2010,2(10):325-332.
[34] Smiley D,Smith MA,Carreira V,et al. Increased fibrosis and progression to heart failure in MRL mice following ischemia/reperfusion injury[J]. Cardiovasc Pathol,2014,23(6):327-334.
[35] Aguiar CJ,Rocha-Franco JA,Sousa PA,et al. Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation[J]. Cell Commun Signal,2014,12:78.

相似文献/References:

[1]张馨月 涂荣会.Toll样受体与心肌缺血再灌注损伤及其保护作用研究进展[J].心血管病学进展,2020,(2):172.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.018]
 ZHANG Xinyue,TU Ronghui.Review Onprotective Effects of Toll-like Receptors on Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(8):172.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.018]
[2]张明 王敬萍.Nur77和GRP78与糖尿病心肌缺血再灌注损伤的关系研究[J].心血管病学进展,2020,(6):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
 ZHANG Ming Wang Jingping.Relationship between Nur77 and GRP78 and Myocardial Ischemia-reperfusion Injury in Diabetic Patients[J].Advances in Cardiovascular Diseases,2020,(8):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
[3]韩敏 朱兵 余嘉清 马依彤.程序性细胞死亡与心肌缺血再灌注损伤[J].心血管病学进展,2020,(10):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
 HAN MinZHU BingYU JiaqingMA Yitong.  Programmed Cell Death and Myocardial Ischemic Reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(8):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
[4]郭双 邢栋 吕勃.程序性坏死、细胞焦亡与心肌缺血再灌注损伤[J].心血管病学进展,2020,(12):1255.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.008]
 GUO Shuang,XING Dong,LYU Bo.NecroptosisPyroptosis and Myocardial Ischemia-reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(8):1255.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.008]
[5]彭石 马茜钰 张丹 张兆元 张锦.铁死亡在心肌缺血再灌注损伤中的作用及靶向治疗研究进展[J].心血管病学进展,2022,(4):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
 PENG Shi,MA Qianyu,ZHANG Dan,et al.Role and Targeted Treatment of Ferroptosis?n Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(8):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
[6]郭双 吕勃.细胞凋亡和程序性坏死在心肌缺血再灌注损伤中的作用研究[J].心血管病学进展,2022,(12):1148.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.020]
 GUO Shuang L YU Bo.The Role of Apoptosis and Necroptosis in Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(8):1148.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.020]
[7]叶宇恒 钱玲玲 王如兴 李库林.心肌缺血再灌注损伤中铁死亡的调控机制研究进展[J].心血管病学进展,2023,(5):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
 YE Yuheng,QIAN Lingling,WANG Ruxing,et al.Regulatory Mechanisms of Ferroptosis in Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(8):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
[8]李秋 李蔚华.TRIM蛋白家族在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2023,(8):743.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.016]
 LI Qiu,LI Weihua.Research Progress of TRIM Family in Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(8):743.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.016]
[9]李俊霖 韩虎魁 程攀科 李刚 陶剑虹.Foxp3+调节性T细胞与心肌缺血再灌注损伤概述[J].心血管病学进展,2023,(9):832.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.015]
 LI Junlin,HAN Hukui,CHENG Panke,et al.Overview of Foxp3+ Regulatory T Cells and Myocardial Ischemia R eperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(8):832.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.015]
[10]冉黔松 周厚荣.长链非编码RNA调节自噬在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2024,(3):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]
 RAN Qiansong ZHOU Hourong.Long Non-Coding RNA Regulating Autophagy in Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2024,(8):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]

备注/Memo

备注/Memo:
收稿日期:2024-03-03基金项目:自治区重点研发计划项目(2022B0322-5)
更新日期/Last Update: 2024-09-12