参考文献/References:
[1] Zhang H,Zhao C,Jiang G,et al. Apelin rejuvenates aged human mesenchymal stem cells by regulating autophagy and improves cardiac protection after infarction[J]. Front Cell Dev Biol,2021,9:628463.
[2] Matta A,Nader V,Lebrin M,et al. Pre-conditioning methods and novel approaches with mesenchymal stem cells therapy in cardiovascular disease[J]. Cells,2022,11(10):1620.
[3] Han Y,Li X,Zhang Y,et al. Mesenchymal stem cells for regenerative medicine[J]. Cells,2019,8(8):886.
[4] Zou Y,Li L,Li Y,et al. Restoring cardiac functions after myocardial infarction-ischemia/reperfusion via an exosome anchoring conductive hydrogel[J]. ACS Appl Mater Interfaces,2021,13(48):56892-56908.
[5] Sahoo S,Adamiak M,Mathiyalagan P,et al. Therapeutic and diagnostic translation of extracellular vesicles in cardiovascular diseases: roadmap to the clinic[J]. Circulation,2021,143(14):1426-1449.
[6] 叶莎,杨翠玲,郑媛媛. 骨髓间充质干细胞来源外泌体通过PI3K/Akt途径减轻过氧化氢诱导心肌细胞损伤[J]. 心血管病学进展,2022,43(3):269-273.
[7] Zhan C,Liu K,Zhang Y,et al. Myocardial infarction unveiled: key miRNA players screened by a novel lncRNA-miRNA-mRNA network model[J]. Comput Biol Med,2023,160:106987.
[8] Mompeón A,Pérez-Cremades D,Paes A B,et al. Circulating miRNA fingerprint and endothelial function in myocardial infarction: comparison at acute event and one-year follow-up[J]. Cells,2022,11(11):1823.
[9] Li Q,Xu Y,Lv K,et al. Small extracellular vesicles containing miR-486-5p promote angiogenesis after myocardial infarction in mice and nonhuman primates[J]. Sci Transl Med,2021,13(584): eabb0202.
[10] Wang H,Fan M,An Y,et al. Molecular mechanism of long noncoding RNA SNHG14 in osteogenic differentiation of bone marrow-derived mesenchymal stem cells through the NEDD4L/FOXA2/PCP4 axis[J]. Stem Cells Int,2023,2023:7545635.
[11] 苏未,张颖,马爽. 1990—2019年中国和全球缺血性心脏病疾病负担变化趋势与发病预测分析[J]. 中国全科医学,2024,27 (19):2375-2381.
[12] Yi F,Xiao H,Song M,et al. BMSC-derived exosomal miR-148b-3p attenuates OGD/R-induced HMC3 cell activation by targeting DLL4 and Notch1[J]. Neurosci Res,2024,199:36-47.
[13] Liu S C,Cao Y H,Chen L B,et al. BMSC-derived exosomal lncRNA PTENP1 suppresses the malignant phenotypes of bladder cancer by upregulating SCARA5 expression[J]. Cancer Biol Ther,2022,23(1):1-13.
[14] Liu Y,Guo Y,Bao S,et al. Bone marrow mesenchymal stem cell-derived exosomal microRNA-381-3p alleviates vascular calcification in chronic kidney disease by targeting NFAT5 [J]. Cell Death Dis,2022,13(3):278.
[15] Han C,Yang J,Sun J,et al. Extracellular vesicles in cardiovascular disease: biological functions and therapeutic implications[J]. Pharmacol Ther,2022,233:108025.
[16] Heo J,Kang H. Exosome-based treatment for atherosclerosis[J]. Int J Mol Sci,2022,23(2):1002.
[17] Cai Y,Li Y. Upregulation of miR-29b-3p protects cardiomyocytes from hypoxia-induced apoptosis by targeting TRAF5[J]. Cell Mol Biol Lett,2019,24:27.
[18] Sun Y,Su Q,Li L,et al. MiR-486 regulates cardiomyocyte apoptosis by p53-mediated BCL-2 associated mitochondrial apoptotic pathway[J]. BMC Cardiovasc Disord,2017,17(1):119.
[19] Zhang Z,Yang J,Yan W,et al. Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair[J]. J Am Heart Assoc,2016,5(1):e002856.
[20] Morales C R,Pedrozo Z,Lavandero S,et al. Oxidative stress and autophagy in cardiovascular homeostasis[J]. Antioxid Redox Signal,2014,20(3):507-518.
[21] Songbo M,Lang H,Xinyong C,et al. Oxidative stress injury in doxorubicin-induced cardiotoxicity[J]. Toxicol Lett,2019,307:41-48.
[22] Wei S,Ma W,Li X,et al. Involvement of ROS/NLRP3 inflammasome signaling pathway in doxorubicin-induced cardiotoxicity[J]. Cardiovasc Toxicol,2020,20(5):507-519.
[23] Rabinovich-Nikitin I,Rasouli M,Reitz CJ,et al. Mitochondrial autophagy and cell survival is regulated by the circadian Clock gene in cardiac myocytes during ischemic stress[J]. Autophagy,2021,17(11):3794-3812.
[24] He Y,Hara H,Nú?ez G. Mechanism and regulation of NLRP3 inflammasome activation[J]. Trends Biochem Sci,2016,41(12):1012-1021.
[25] Huang Y,Xu W,Zhou R. NLRP3 inflammasome activation and cell death[J]. Cell Mol Immunol,2021,18(9):2114-2127.
[26] Liu D,Zeng X,Li X,et al. Role of NLRP3 inflammasome in the pathogenesis of cardiovascular diseases[J]. Basic Res Cardiol,2018,113(1):5.
[27] Peng J F,Zhao X N,Zhang M,et al. Punicalagin attenuates ventricular remodeling after acute myocardial infarction via regulating the NLRP3/caspase-1 pathway[J]. Pharm Biol,2023,61(1):963-972.
[28] Jin Y,Fu J. Novel insights into the NLRP 3 inflammasome in atherosclerosis[J]. J Am Heart Assoc,2019,8(12): e012219.
[29] Zhao H,Gu Y,Chen H. Propofol ameliorates endotoxin?induced myocardial cell injury by inhibiting inflammation and apoptosis via the PPARγ/HMGB1/NLRP3 axis[J]. Mol Med Rep,2021,23(3):176.
[30] Wang SH,Cui LG,Su XL,et al. GSK-3β-mediated activation of NLRP3 inflammasome leads to pyroptosis and apoptosis of rat cardiomyocytes and fibroblasts[J]. Eur J Pharmacol,2022,920:174830.
相似文献/References:
[1]宋菲,综述,俞梦越,等.干细胞来源的外泌体:心肌梗死治疗新启示[J].心血管病学进展,2016,(2):125.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.007]
SONG Fei,YU Mengyue.Exosomes Derived from Stem Cells: Novel Approach in Treatment of
Myocardial Infarction[J].Advances in Cardiovascular Diseases,2016,(9):125.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.007]
[2]姚雯,毛露,孙硕,等.心源性外泌体作为冠心病标志物和新靶点展望[J].心血管病学进展,2019,(6):844.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.002]
YAO Wen,MAO Lu,SUN Shuo,et al.Exogenous Exosome as A New Marker and Target of Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(9):844.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.002]
[3]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(9):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[4]张伟 木胡牙提.外泌体源性miRNAs在心血管疾病中的研究进展[J].心血管病学进展,2020,(2):111.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.002]
Zhang Wei,Muhuyati.Exogenous miRNAs in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(9):111.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.002]
[5]李一凡 张智伟.巨噬细胞相关的外泌体在心血管疾病中的作用研究进展[J].心血管病学进展,2020,(8):839.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.014]
LI Yifan,ZHANG Zhiwei.Role of Macrophage-Related Exosomes in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(9):839.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.014]
[6]肖轶 余国龙.不同干细胞来源的外泌体在缺血性心脏病中的促血管新生作用[J].心血管病学进展,2022,(4):293.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]
XIAO Yi,YU Guolong?/html>.Application of Exosomes Derived from Various Stem Cells?n Ischemic Heart Disease[J].Advances in Cardiovascular Diseases,2022,(9):293.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]
[7]俞佳丽 景雨 张剑 陈楚 陆齐 顾周山 陈子微 周大胜 景宏美 潘丽华.间充质干细胞来源的外泌体在心肌梗死治疗中的研究进展[J].心血管病学进展,2022,(4):341.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.013]
YU JialiJING YuZHANG JianCHEN ChuLU QiGU ZhoushanCHEN ZiweiZHOU DashenJING HongmeiPAN Lihua.Exosomes Derived from Mesenchymal Stem Cells?n the Treatment of Myocardial Infarction[J].Advances in Cardiovascular Diseases,2022,(9):341.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.013]
[8]杨珂欣 李星辉 肖晨朦 姚晓涛 林萌 蔡佳.间充质干细胞来源外泌体改善心肌纤维化的研究进展[J].心血管病学进展,2022,(12):1123.[doi:10.16806/j.cnki.issn.1004-3934.20.10.015]
YANG Kexin LI Xinghui XIAO ChenmengYAO XiaotaoLIN MengCAI Jia.Improving Myocardial Fibrosis by Exosome Derived from Mesenchymal Stem Cell[J].Advances in Cardiovascular Diseases,2022,(9):1123.[doi:10.16806/j.cnki.issn.1004-3934.20.10.015]
[9]陈鹏莉 宋紫微 张曼玉 李丽丽.干细胞来源外泌体miRNA介导心脏修复的研究进展[J].心血管病学进展,2023,(7):636.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.014]
CHEN Pengli,SONG Ziwei,ZHANG Manyu,et al.Exosomal miRNA Derived from Stem Cells in Mediating Cardiac Repair[J].Advances in Cardiovascular Diseases,2023,(9):636.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.014]
[10]杨安妮 厉腊梅 王绿娅 蔡高军.外泌体与脂质代谢研究进展[J].心血管病学进展,2024,(8):753.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.017]
YANG Anni,LI Lamei,WANG Lyuya,et al.Research Progress on Exosomes and Lipid Metabolism[J].Advances in Cardiovascular Diseases,2024,(9):753.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.017]
[11]叶莎 杨翠玲 郑媛媛.骨髓间充质干细胞来源外泌体通过PI3K/Akt途径减轻H2O2诱导心肌细胞损伤[J].心血管病学进展,2022,(3):269.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
YE Sha,YANG Cuiling,ZHENG Yuanyuan.Bone Marrow Mesenchymal Stem Cells Derived Exosomes Attenuate H 2O2 Induced Cardiomyocyte Injury Via PI3K/Akt Pathway[J].Advances in Cardiovascular Diseases,2022,(9):269.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]