[1]李心瑶 陈俊 李灼.脓毒症心肌病的发病机制研究进展[J].心血管病学进展,2024,(1):44.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]
 LI Xinyao,CHEN Jun,LI Zhuo.Pathogenesis of Septic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2024,(1):44.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]
点击复制

脓毒症心肌病的发病机制研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年1期
页码:
44
栏目:
综述
出版日期:
2024-02-21

文章信息/Info

Title:
Pathogenesis of Septic Cardiomyopathy
作者:
李心瑶 陈俊 李灼
(南京医科大学附属儿童医院急诊/重症医学科,江苏 南京 210008)
Author(s):
LI XinyaoCHEN JunLI Zhuo
(Department Of Emergency/Intensive Care,Childrens Hospital of Nanjing Medical University,Nanjing 210008,Jiangsu,China)
关键词:
脓毒症心肌病损伤相关分子模式病原体相关分子模式线粒体功能障碍铁死亡细胞焦亡
Keywords:
Septic cardiomyopathy Damage-associated molecular pattern Pathogen-associated molecular pattern Mitochondrial dysfunction Ferroptosis Pyroptosis
DOI:
10.16806/j.cnki.issn.1004-3934.2023.01.012
摘要:
脓毒症是宿主对感染的反应失调而导致威胁生命的器官功能障碍,脓毒症心肌病是严重脓毒症和脓毒性休克的并发症,死亡率高,预后不良,但目前脓毒症心肌病的病理生理机制暂不明确,尚无针对性的治疗措施。现总结目前关于脓毒症引起心肌功能障碍相关机制的研究现状,为未来的研究和干预方向提供新思路。
Abstract:
Sepsis is a life-threatening organ dysfunction caused by the host’s imbalance in response to infection. Septic cardiomyopathy is a complication of severe sepsis and septic shock ,with high mortality and poor prognosis. However,the pathophysiological mechanism of septic cardiomyopathy is currently unclear ,and there is no targeted treatment measure. The purpose of this review is to summarize the current research on the mechanism of myocardial dysfunction caused by sepsis,and provide new ideas for future research and intervention direction

参考文献/References:

[1] Singer M,Deutschman CS,Seymour CW,et al. The Third International Consensus Definitions for Sepsis and Septic Shock(Sepsis-3)[J]. JAMA,2016,315(8):801-810.

[2] Lima,MR,Silva D. Septic cardiomyopathy:a narrative review[J]. Rev Port Cardiol,2023,42(5):471-481.

[3] Stanzani G,Duchen MR,Singer M. The role of mitochondria in sepsis-induced cardiomyopathy[J]. Biochim Biophys Acta Mol Basis Dis,2019,1865(4):759-773.

[4] Denning NL,Aziz M,Gurien SD,et al. DAMPs and NETs in Sepsis[J]. Front Immunol,2019,10:2536.

[5] Sessa L,Bianchi ME. The evolution of High Mobility Group Box(HMGB) chromatin proteins in multicellular animals[J]. Gene,2007,387(1-2):133-140.

[6] Yu Y,Ou-Yang WX,Zhang H,et al. MiR-125b enhances autophagic flux to improve septic cardiomyopathy via targeting STAT3/HMGB1[J]. Exp Cell Res,2021,409(2):112842.

[7] Voelker MT,Hechaichi N,Ndongson-Dongmo B,et al. Role of the lectin-like domain of thrombomodulin in septic cardiomyopathy[J]. Life Sci,2022,306:120830..

[8] Qiu Y,Yu Y,Qin XM,et al. CircTLK1 modulates sepsis‐induced cardiomyocyte apoptosis via enhancing PARP1/HMGB1 axis–mediated mitochondrial DNA damage by sponging miR‐17‐5p[J]. J Cell Mol Med,2021,25(17):8244-8260.

[9] Fattahi F,Frydrych LM,Bian G,et al. Role of complement C5a and histones in septic cardiomyopathy[J]. Mol Immunol,2018,102:32-41.

[10] Calderwood SK,Gong J,Murshid A. Extracellular HSPs:the complicated roles of extracellular HSPs in immunity[J]. Front Immunol,2016,7:159.

[11] Song C,Zhang Y,Pei Q,et al. HSP70 alleviates sepsis-induced cardiomyopathy by attenuating mitochondrial dysfunction-initiated NLRP3 inflammasome-mediated pyroptosis in cardiomyocytes[J]. Burns Trauma,2022,10:tkac043.

[12] Liu X,Zhang C,Zhang C,et al. Heat shock protein 70 inhibits cardiomyocyte necroptosis through repressing autophagy in myocardial ischemia/reperfusion injury[J]. In Vitro Cell Dev Biol Anim,2016,52(6):690-698.

[13] Ryu JK,Kim SJ,Rah SH,et al. Reconstruction of LPS transfer cascade reveals structural determinants within LBP,CD14,and TLR4-MD2 for efficient LPS recognition and transfer[J]. Immunity,2017,46(1):38-50.

[14] Dickson K,Lehmann C. Inflammatory response to different toxins in experimental sepsis models[J]. Int J Mol Sci,2019,20(18):4341.

[15] Lopaschuk GD,Karwi QG,Tian R,et al. Cardiac energy metabolism in heart failure[J]. Circ Res,2021,128(10):1487-1513.

[16] Daniels LJ,Varma U,Annandale M,et al. Myocardial energy stress,autophagy induction,and cardiomyocyte functional responses[J]. Antioxid Redox Signal,2019,31(6):472-486.

[17] Pérez MJ,Quintanilla RA. Development or disease:duality of the mitochondrial permeability transition pore[J]. Dev Biol,2017,426(1):1-7.

[18] Kwong JQ,Molkentin JD. Physiological and pathological roles of the mitochondrial permeability transition pore in the heart[J]. Cell Metab,2015,21(2):206-214.

[19] Endlicher R,Drahota Z,?tefková K,et al. The mitochondrial permeability transition pore—Current knowledge of its structure,function,and regulation,and optimized methods for evaluating its functional state[J]. Cells,2023,12(9):1273.

[20] Sen P,Gupta K,Kumari A,et al. Wnt/β-Catenin antagonist pyrvinium exerts cardioprotective effects in polymicrobial sepsis model by attenuating calcium dyshomeostasis and mitochondrial dysfunction[J]. Cardiovasc Toxicol,2021,21(7):517-532.

[21] Joseph LC,Kokkinaki D,Valenti MC,et al. Inhibition of NADPH oxidase 2(NOX2) prevents sepsis-induced cardiomyopathy by improving calcium handling and mitochondrial function[J]. JCI Insight,2017,2(17):e94248.

[22] Pan P,Wang X,Liu D. The potential mechanism of mitochondrial dysfunction in septic cardiomyopathy[J]. J Int Med Res,2018,46(6):2157-2169.

[23] Su LJ,Zhang JH,Gomez H,et al. Reactive oxygen species-induced lipid peroxidation in apoptosis,autophagy,and ferroptosis[J]. Oxid Med Cell Longev,2019,2019:1-13.

[24] Zorov DB,Juhaszova M,Sollott SJ. Mitochondrial reactive oxygen species(ROS) and ROS-induced ROS release[J]. Physiol Rev,2014,94(3):909-950.

[25] Li N,Zhou H,Wu H,et al. STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction,inflammation,apoptosis and pyroptosis by activating NLRP3[J]. Redox Biol,2019,24:101215.

[26] Song P,Shen DF,Meng YY,et al. Geniposide protects against sepsis-induced myocardial dysfunction through AMPKα-dependent pathway[J]. Free Radic Biol Med,2020,152:186-196.

[27] Luongo TS,Lambert JP,Gross P,et al. The mitochondrial Na+/Ca2+ exchanger is essential for Ca 2+ homeostasis and viability[J]. Nature,2017,545(7652):93-97.

[28] Zhou Q,Xie M,Zhu J,et al. PINK1 contained in huMSC-derived exosomes prevents cardiomyocyte mitochondrial calcium overload in sepsis via recovery of mitochondrial Ca2+ efflux[J]. Stem Cell Res Ther,2021,12(1):269.

[29] Primeau JO,Armanious GP,Fisher ME,et al. The SarcoEndoplasmic Reticulum Calcium ATPase[J]. Subcell Biochem,2018,87:229-258.

[30] Zhang J,Liu H,Li S,et al. SERCA1 attenuates diaphragm relaxation and uptake rate of SERCA in rats with acute sepsis[J]. Mol Med Rep,2017,16(4):5015-5022.

[31] Ni L,Lin B,Shen M,et al. PKM2 deficiency exacerbates gram-negative sepsis-induced cardiomyopathy via disrupting cardiac calcium homeostasis[J]. Cell Death Discov,2022,8(1):496.

[32] Zhu XX,Wang X,Jiao SY,et al. Cardiomyocyte peroxisome proliferator-activated receptor α prevents septic cardiomyopathy via improving mitochondrial function[J]. Acta Pharmacol Sin,2023,44(11):2184-2200.

[33] Wai T,Langer T. Mitochondrial dynamics and metabolic regulation[J]. Trends Endocrinol Metab,2016,27(2):105-117.

[34] Rodrigues T,Ferraz LS. Therapeutic potential of targeting mitochondrial dynamics in cancer[J]. Biochem Pharmacol,2020,182:114282.

[35] Haileselassie B,Mukherjee R,Joshi AU,et al. Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy[J]. J Mol Cell Cardiol,2019,130:160-169.

[36] Wu F,Zhang YT,Teng F,et al. S100a8/a9 contributes to sepsis-induced cardiomyopathy by activating ERK1/2-Drp1-mediated mitochondrial fission and respiratory dysfunction[J]. Int Immunopharmacol,2023,115:109716.

[37] Tan Y,Ouyang H,Xiao X,et al. Irisin ameliorates septic cardiomyopathy via inhibiting DRP1-related mitochondrial fission and normalizing the JNK-LATS2 signaling pathway[J]. Cell Stress Chaperones,2019,24(3):595-608.

[38] Mukherjee R,Tetri LH,Li SJ,et al. Drp1/p53 interaction mediates p53 mitochondrial localization and dysfunction in septic cardiomyopathy[J]. J Mol Cell Cardiol,2023,177:28-37.

[39] Li J,Cao F,Yin HL,et al. Ferroptosis:past,present and future[J]. Cell Death Dis,2020,11(2):88.

[40] Li N,Wang W,Zhou H,et al. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury[J]. Free Radic Biol Med,2020,160:303-318.

[41] Cao G,Zeng Y,Zhao Y,et al. H2S regulation of ferroptosis attenuates sepsis?induced cardiomyopathy[J]. Mol Med Rep,2022,26(5):335.

[42] Zeng Y,Cao G,Lin L,et al. Resveratrol attenuates sepsis-induced cardiomyopathy in rats through anti-ferroptosis via the Sirt1/Nrf2 pathway[J]. J Invest Surg,2023,36(1):2157521.

[43] Chen Z,Cao Z,Gui F,et al. TMEM43 protects against sepsis-induced cardiac injury via inhibiting ferroptosis in mice[J]. Cells,2022,11(19):2992.

[44] Xiao Z,Kong B,Fang J,et al. Ferrostatin-1 alleviates lipopolysaccharide-induced cardiac dysfunction[J]. Bioengineered,2021,12(2):9367-9376.

[45] Wang J,Guan P,Chen Y,et al. Cyclovirobuxine D pretreatment ameliorates septic heart injury through mitigation of ferroptosis[J]. Exp Ther Med,2023,26(2):407.

[46] Sheng SY,Li JM,Hu XY,et al. Regulated cell death pathways in cardiomyopathy[J]. Acta Pharmacol Sin,2023,44(8):1521-1535.

[47] Fan Y,Guan B,Xu J,et al. Role of toll-like receptor-mediated pyroptosis in sepsis-induced cardiomyopathy[J]. Biomed Pharmacother,2023,167:115493.

相似文献/References:

[1]马淑青 唐其柱.氧化应激在脓毒症心肌病中的研究进展[J].心血管病学进展,2021,(2):118.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.006]
 MA Shuqing,TANG Qizhu.Role of Oxidative Stress in Septic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(1):118.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.006]

更新日期/Last Update: 2024-03-06