[1]董泽耀 庄小密 鲁静.模式识别受体在糖尿病心肌病中的研究进展[J].心血管病学进展,2024,(6):548.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.016]
 DONG Zeyao,ZHUANG Xiaomi,LU Jing?/html>.Research Progress of Pattern Recognition Receptors in?iabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2024,(6):548.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.016]
点击复制

模式识别受体在糖尿病心肌病中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年6期
页码:
548
栏目:
综述
出版日期:
2024-06-25

文章信息/Info

Title:
Research Progress of Pattern Recognition Receptors in?iabetic Cardiomyopathy
作者:
董泽耀 庄小密 鲁静
(哈尔滨医科大学附属第一医院,黑龙江 哈尔滨 150001)
Author(s):
DONG ZeyaoZHUANG XiaomiLU Jing?/html>
?The First Affiliated Hospital of Harbin Medical University,Harbin 150001,Heilongjiang,China)
关键词:
糖尿病心肌病模式识别受体固有免疫应答炎症反应
Keywords:
Diabetic cardiomyopathyPattern recognition receptorInnate immune responseInflammation reaction
DOI:
10.16806/j.cnki.issn.1004-3934.2024.06.016
摘要:
糖尿病心肌病(DCM)是糖尿病患者死亡的主要原因,但确切调控机制仍不清楚。近年研究发现,固有免疫应答是DCM发展过程的中心环节。模式识别受体是执行固有免疫功能的重要分子,主要包括Toll样受体、核苷酸结合寡聚化结构域样受体、维甲酸诱导基因Ⅰ样受体、C型凝集素样受体、黑色素瘤缺乏因子2样受体、清道夫受体和环状GMP-AMP合成酶。现就上述几种模式识别受体在DCM中作用的研究进展进行综述,以期为DCM的临床治疗提供新思路和新靶点。
Abstract:
Diabetic Cardiomyopathy (DCM) is a leading cause of death among patients with diabetes,yet the precise regulatory mechanisms remain unclear. Recent studies have discovered that the innate immune response plays a central role in the progression of DCM. Pattern recognition receptors are critical molecules that execute the functions of the innate immune system,including Toll-like receptor,nucleotide-binding oligomerization domain-like receptor,retinoic acid-inducible gene-Ⅰ-like receptor,C-type lectin-like receptor,absent in melanoma-2-like receptor,scavenger receptor,and cyclic GMP-AMP synthase. This review summarizes the research progress on the role of these pattern recognition receptors in DCM,aiming to provide new insights and targets for the clinical treatment of DCM

参考文献/References:

[1]Sun H,Saeedi P,Karuranga S,et al. IDF diabetes atlas:global,regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract,2022,183:109119.

[2]Murtaza G,Virk HUH,Khalid M,et al. Diabetic cardiomyopathy—A comprehensive updated review[J]. Prog Cardiovasc Dis,2019,62(4):315-326.

[3]Jia G,Whaley-Connell A,Sowers JR. Diabetic cardiomyopathy:a hyperglycaemia- and insulin-resistance-induced heart disease[J]. Diabetologia,2018,61(1):21-28.

[4]Wang X,Antony V,Wang Y,et al. Pattern recognition receptor-mediated inflammation in diabetic vascular complications[J]. Med Res Rev,2020,40(6):2466-2484.

[5]Zhou ZF,Jiang L,Zhao Q,et al. Roles of pattern recognition receptors in diabetic nephropathy[J]. J Zhejiang Univ Sci B,2020,21(3):192-203.

[6]Xu M,Liu PP,Li H. Innate immune signaling and its role in metabolic and cardiovascular diseases[J]. Physiol Rev,2019,99(1):893-948.

[7]Wicherska-Paw?owska K,Wróbel T,Rybka J. Toll-like receptors (TLRs),NOD-like receptors (NLRs),and RIG-Ⅰ-like receptors (RLRs) in innate immunity. TLRs, NLRs,and RLRs ligands as immunotherapeutic agents for hematopoietic diseases[J].Int J Mol Sci,2021,22(24):13397.

[8]Balistreri CR,Ruvolo G,Lio D,et al. Toll-like receptor-4 signaling pathway in aorta aging and diseases:“its double nature”[J]. J Mol Cell Cardiol,2017,110:38-53.

[9]Wang Y,Luo W,Han J,et al. MD2 activation by direct AGE interaction drives inflammatory diabetic cardiomyopathy[J]. Nat Commun,2020,11(1):2148.

[10]Luo W,Wu G,Chen X,et al. Blockage of MyD88 in cardiomyocytes alleviates cardiac inflammation and cardiomyopathy in experimental diabetic mice[J]. Biochem Pharmacol,2022,206:115292.

[11]Yao J,Li Y,Jin Y,et al. Synergistic cardioptotection by tilianin and syringin in diabetic cardiomyopathy involves interaction of TLR4/NF-κB/NLRP3 and PGC1a/SIRT3 pathways[J]. Int Immunopharmacol,2021,96:107728.

[12]Chang CA,Murphy K,Kane RR,et al. Early TLR4 blockade attenuates sterile inflammation-mediated stress in islets during isolation and promotes successful transplant outcomes[J]. Transplantation,2018,102(9):1505-1513.

[13]Zhu L,Han J,Yuan R,et al. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway[J]. Biol Res,2018,51(1):9.

[14]Lei L,Hu H,Lei Y,et al. Leukocytic toll-like receptor 2 knockout protects against diabetes-induced cardiac dysfunction[J]. Biochem Biophys Res Commun,2018,506(3):668-673.

[15]Zhang Y,Zhang Y. Toll-like receptor-6 (TLR6) deficient mice are protected from myocardial fibrosis induced by high fructose feeding through anti-oxidant and inflammatory signaling pathway[J]. Biochem Biophys Res Commun,2016,473(2):388-395.

[16]Ding K,Song C,Hu H,et al. The role of NLRP3 inflammasome in diabetic cardiomyopathy and its therapeutic implications[J]. Oxid Med Cell Longev,2022,2022:3790721.

[17]Zeng C,Wang R,Tan H. Role of pyroptosis in cardiovascular diseases and its therapeutic implications[J]. Int J Biol Sci,2019,15(7):1345-1357.

[18]Liu C,Yao Q,Hu T,et al. Cathepsin B deteriorates diabetic cardiomyopathy induced by streptozotocin via promoting NLRP3-mediated pyroptosis[J]. Mol Ther Nucleic Acids,2022,30:198-207.

[19]Sun S,Gong D,Liu R,et al. Puerarin inhibits NLRP3-Caspase-1-GSDMD-mediated pyroptosis via P2X7 receptor in cardiomyocytes and macrophages[J]. Int J Mol Sci,2023,24(17):13169.

[20]Ye Y,Bajaj M,Yang HC,et al. SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin,a DPP4 inhibitor[J]. Cardiovasc Drugs Ther,2017,31(2):119-132.

[21]Li H,Guan Y,Liang B,et al. Therapeutic potential of MCC950,a specific inhibitor of NLRP3 inflammasome[J]. Eur J Pharmacol,2022,928:175091.

[22]Gao R,Shi H,Chang S,et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces myocardial fibrosis and improves cardiac remodeling in a mouse model of myocardial infarction[J]. Int Immunopharmacol,2019,74:105575.

[23]Zhang C,Zhu X,Li L,et al. A small molecule inhibitor MCC950 ameliorates kidney injury in diabetic nephropathy by inhibiting NLRP3 inflammasome activation[J]. Diabetes Metab Syndr Obes,2019,12:1297-1309.

[24]Mangan MSJ,Olhava EJ,Roush WR,et al. Targeting the NLRP3 inflammasome in inflammatory diseases[J]. Nat Rev Drug Discov,2018,17(8):588-606.

[25]McBride C,Trzoss L,Povero D,et al. Overcoming preclinical safety obstacles to discover (S)-N-((1,2,3,5,6,7-Hexahydro-s-indacen-4-yl)carbamoyl)-6-(methylamino)-6,7-dihydro-5H-pyrazolo[5,1-b][1,3]oxazine-3-sulfonamide (GDC-2394):a potent and selective NLRP3 inhibitor[J]. J Med Chem,2022,65(21):14721-14739.

[26]Aida K,Nishida Y,Tanaka S,et al. RIG-Ⅰ- and MDA5-initiated innate immunity linked with adaptive immunity accelerates beta-cell death in fulminant type 1 diabetes[J]. Diabetes,2011,60(3):884-889.

[27]Pan Y,Li G,Zhong H,et al. RIG-Ⅰ inhibits pancreatic β cell proliferation through competitive binding of activated Src[J]. Sci Rep,2016,6:28914.

[28]Li M,Zhang R,Li J,et al. The role of C-type lectin receptor signaling in the intestinal microbiota-inflammation-cancer axis[J]. Front Immunol,2022,13:894445.

[29]Ichioka M,Suganami T,Tsuda N,et al. Increased expression of macrophage-inducible C-type lectin in adipose tissue of obese mice and humans[J]. Diabetes,2011,60(3):819-826.

[30]Pavlov VI,La Bonte LR,Baldwin WM,et al. Absence of mannose-binding lectin prevents hyperglycemic cardiovascular complications[J]. Am J Pathol,2012,180(1):104-112.

[31]Li D,Wu M. Pattern recognition receptors in health and diseases[J]. Signal Transduct Target Ther,2021,6(1):291.

[32]Arunachalam LT,Suresh S,Lavu V,et al. Association of salivary levels of DNA sensing inflammasomes AIM2,IFI16 and cytokine IL 18 with periodontitis and diabetes[J]. J Periodontol,2024,95(2):114-124.

[33]Hsu CC,Fidler TP,Kanter JE,et al. Hematopoietic NLRP3 and AIM2 inflammasomes promote diabetes-accelerated atherosclerosis,but increased necrosis is independent of pyroptosis[J]. Diabetes,2023,72(7):999-1011.

[34]Wang X,Pan J,Liu H,et al. AIM2 gene silencing attenuates diabetic cardiomyopathy in type 2 diabetic rat model[J]. Life Sci,2019,221:249-258.

[35]Santiago-Fernández C,Pérez-Belmonte LM,Millán-Gómez M,et al. Overexpression of scavenger receptor and infiltration of macrophage in epicardial adipose tissue of patients with ischemic heart disease and diabetes[J]. J Transl Med,2019,17(1):95.

[36]Alquraini A,El Khoury J. Scavenger receptors[J]. Curr Biol,2020,30(14):R790-R795.

[37]Angin Y,Steinbusch LKM,Simons PJ,et al. CD36 inhibition prevents lipid accumulation and contractile dysfunction in rat cardiomyocytes[J]. Biochem J,2012,448(1):43-53.

[38]Li X,Li Z,Dong X,et al. Astragaloside Ⅳ attenuates myocardial dysfunction in diabetic cardiomyopathy rats through downregulation of CD36-mediated ferroptosis[J]. Phytother Res,2023,37(7):3042-3056.

[39]Unterholzner L. Innate immune sensing by cGAS-STING in animals reveals unexpected messengers [J]. Cell,2023,186(15):3145 -3147.

[40]Ma XM,Geng K,Law BY,et al. Lipotoxicity-induced mtDNA release promotes diabetic cardiomyopathy by activating the cGAS-STING pathway in obesity-related diabetes[J]. Cell Biol Toxicol,2023,39(1):277-299.

相似文献/References:

[1]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
 WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(6):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[2]杨沫,姜文锡.线粒体功能异常在糖尿病心肌病发病机制中的作用[J].心血管病学进展,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
 YANG Mo,JIANG Wenxi.Mitochondrial Dysfunction of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
[3]朱月红,戴启明.糖尿病心肌病的内质网病变机制及干预[J].心血管病学进展,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
 ZHU Yuehong,DAI Qiming.Advance of Mechanism and Intervention of Endoplasmic Reticulum in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
[4]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(6):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[5]武韧 常贵全 孙凤起 李鸿珠.硫化氢对糖尿病心肌病的保护作用[J].心血管病学进展,2021,(1):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 WU Ren,CHANG Guiquan,SUN Fengqi,et al.Protective Effect of Hydrogen Sulfide in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(6):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[6]宋元秀 崔鸣.线粒体动力学异常与相关心血管疾病[J].心血管病学进展,2021,(2):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 SONG Yuanxiu,CUI Ming.Correlation Between Mitochondrial Dynamics and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(6):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]马韵之 李剑 周鹏.糖尿病心肌病血清生物标志物研究进展[J].心血管病学进展,2021,(5):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
 Serum Biomarkers of Diabetic Cardiomyopathy.[J].Advances in Cardiovascular Diseases,2021,(6):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
[8]李艳鹏 马依彤.糖尿病心肌病治疗策略的研究进展[J].心血管病学进展,2022,(9):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
 LI Yanpeng,MA Yitong.Treatment Strategies for Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2022,(6):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
[9]曹兴丹 陈子仪 宋小刚 张玉秀 陈敏 汤吉超 李萍萍 陈永清 荆哲.EMRE在高糖环境中的变化对心肌细胞凋亡机制的研究[J].心血管病学进展,2022,(10):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
 CAO XingdanCHEN ZiyiSONG XiaogangZHANG YuxiuCHEN MinTANG JichaoLI PingpingCHEN YongqingJING Zhe.Effect of High Glucose-Induced EMRE Expressions Changes on?yocardial Apoptosis[J].Advances in Cardiovascular Diseases,2022,(6):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
[10]林佳音 王莉莉 于小晴.胰高血糖素样肽-1受体激动剂对糖尿病心肌病的影响[J].心血管病学进展,2023,(11):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]
 LIN Jiayin,WANG Lili,YU Xiaoqing.Effect of Glucagon-Like Peptide-1 Receptor Agonist on Diabetes Cardiomyopathy[J].Advances in Cardiovascular Diseases,2023,(6):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]

更新日期/Last Update: 2024-07-26