参考文献/References:
[1]Sun H,Saeedi P,Karuranga S,et al. IDF diabetes atlas:global,regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract,2022,183:109119.
[2]Murtaza G,Virk HUH,Khalid M,et al. Diabetic cardiomyopathy—A comprehensive updated review[J]. Prog Cardiovasc Dis,2019,62(4):315-326.
[3]Jia G,Whaley-Connell A,Sowers JR. Diabetic cardiomyopathy:a hyperglycaemia- and insulin-resistance-induced heart disease[J]. Diabetologia,2018,61(1):21-28.
[4]Wang X,Antony V,Wang Y,et al. Pattern recognition receptor-mediated inflammation in diabetic vascular complications[J]. Med Res Rev,2020,40(6):2466-2484.
[5]Zhou ZF,Jiang L,Zhao Q,et al. Roles of pattern recognition receptors in diabetic nephropathy[J]. J Zhejiang Univ Sci B,2020,21(3):192-203.
[6]Xu M,Liu PP,Li H. Innate immune signaling and its role in metabolic and cardiovascular diseases[J]. Physiol Rev,2019,99(1):893-948.
[7]Wicherska-Paw?owska K,Wróbel T,Rybka J. Toll-like receptors (TLRs),NOD-like receptors (NLRs),and RIG-Ⅰ-like receptors (RLRs) in innate immunity. TLRs, NLRs,and RLRs ligands as immunotherapeutic agents for hematopoietic diseases[J].Int J Mol Sci,2021,22(24):13397.
[8]Balistreri CR,Ruvolo G,Lio D,et al. Toll-like receptor-4 signaling pathway in aorta aging and diseases:“its double nature”[J]. J Mol Cell Cardiol,2017,110:38-53.
[9]Wang Y,Luo W,Han J,et al. MD2 activation by direct AGE interaction drives inflammatory diabetic cardiomyopathy[J]. Nat Commun,2020,11(1):2148.
[10]Luo W,Wu G,Chen X,et al. Blockage of MyD88 in cardiomyocytes alleviates cardiac inflammation and cardiomyopathy in experimental diabetic mice[J]. Biochem Pharmacol,2022,206:115292.
[11]Yao J,Li Y,Jin Y,et al. Synergistic cardioptotection by tilianin and syringin in diabetic cardiomyopathy involves interaction of TLR4/NF-κB/NLRP3 and PGC1a/SIRT3 pathways[J]. Int Immunopharmacol,2021,96:107728.
[12]Chang CA,Murphy K,Kane RR,et al. Early TLR4 blockade attenuates sterile inflammation-mediated stress in islets during isolation and promotes successful transplant outcomes[J]. Transplantation,2018,102(9):1505-1513.
[13]Zhu L,Han J,Yuan R,et al. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway[J]. Biol Res,2018,51(1):9.
[14]Lei L,Hu H,Lei Y,et al. Leukocytic toll-like receptor 2 knockout protects against diabetes-induced cardiac dysfunction[J]. Biochem Biophys Res Commun,2018,506(3):668-673.
[15]Zhang Y,Zhang Y. Toll-like receptor-6 (TLR6) deficient mice are protected from myocardial fibrosis induced by high fructose feeding through anti-oxidant and inflammatory signaling pathway[J]. Biochem Biophys Res Commun,2016,473(2):388-395.
[16]Ding K,Song C,Hu H,et al. The role of NLRP3 inflammasome in diabetic cardiomyopathy and its therapeutic implications[J]. Oxid Med Cell Longev,2022,2022:3790721.
[17]Zeng C,Wang R,Tan H. Role of pyroptosis in cardiovascular diseases and its therapeutic implications[J]. Int J Biol Sci,2019,15(7):1345-1357.
[18]Liu C,Yao Q,Hu T,et al. Cathepsin B deteriorates diabetic cardiomyopathy induced by streptozotocin via promoting NLRP3-mediated pyroptosis[J]. Mol Ther Nucleic Acids,2022,30:198-207.
[19]Sun S,Gong D,Liu R,et al. Puerarin inhibits NLRP3-Caspase-1-GSDMD-mediated pyroptosis via P2X7 receptor in cardiomyocytes and macrophages[J]. Int J Mol Sci,2023,24(17):13169.
[20]Ye Y,Bajaj M,Yang HC,et al. SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin,a DPP4 inhibitor[J]. Cardiovasc Drugs Ther,2017,31(2):119-132.
[21]Li H,Guan Y,Liang B,et al. Therapeutic potential of MCC950,a specific inhibitor of NLRP3 inflammasome[J]. Eur J Pharmacol,2022,928:175091.
[22]Gao R,Shi H,Chang S,et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces myocardial fibrosis and improves cardiac remodeling in a mouse model of myocardial infarction[J]. Int Immunopharmacol,2019,74:105575.
[23]Zhang C,Zhu X,Li L,et al. A small molecule inhibitor MCC950 ameliorates kidney injury in diabetic nephropathy by inhibiting NLRP3 inflammasome activation[J]. Diabetes Metab Syndr Obes,2019,12:1297-1309.
[24]Mangan MSJ,Olhava EJ,Roush WR,et al. Targeting the NLRP3 inflammasome in inflammatory diseases[J]. Nat Rev Drug Discov,2018,17(8):588-606.
[25]McBride C,Trzoss L,Povero D,et al. Overcoming preclinical safety obstacles to discover (S)-N-((1,2,3,5,6,7-Hexahydro-s-indacen-4-yl)carbamoyl)-6-(methylamino)-6,7-dihydro-5H-pyrazolo[5,1-b][1,3]oxazine-3-sulfonamide (GDC-2394):a potent and selective NLRP3 inhibitor[J]. J Med Chem,2022,65(21):14721-14739.
[26]Aida K,Nishida Y,Tanaka S,et al. RIG-Ⅰ- and MDA5-initiated innate immunity linked with adaptive immunity accelerates beta-cell death in fulminant type 1 diabetes[J]. Diabetes,2011,60(3):884-889.
[27]Pan Y,Li G,Zhong H,et al. RIG-Ⅰ inhibits pancreatic β cell proliferation through competitive binding of activated Src[J]. Sci Rep,2016,6:28914.
[28]Li M,Zhang R,Li J,et al. The role of C-type lectin receptor signaling in the intestinal microbiota-inflammation-cancer axis[J]. Front Immunol,2022,13:894445.
[29]Ichioka M,Suganami T,Tsuda N,et al. Increased expression of macrophage-inducible C-type lectin in adipose tissue of obese mice and humans[J]. Diabetes,2011,60(3):819-826.
[30]Pavlov VI,La Bonte LR,Baldwin WM,et al. Absence of mannose-binding lectin prevents hyperglycemic cardiovascular complications[J]. Am J Pathol,2012,180(1):104-112.
[31]Li D,Wu M. Pattern recognition receptors in health and diseases[J]. Signal Transduct Target Ther,2021,6(1):291.
[32]Arunachalam LT,Suresh S,Lavu V,et al. Association of salivary levels of DNA sensing inflammasomes AIM2,IFI16 and cytokine IL 18 with periodontitis and diabetes[J]. J Periodontol,2024,95(2):114-124.
[33]Hsu CC,Fidler TP,Kanter JE,et al. Hematopoietic NLRP3 and AIM2 inflammasomes promote diabetes-accelerated atherosclerosis,but increased necrosis is independent of pyroptosis[J]. Diabetes,2023,72(7):999-1011.
[34]Wang X,Pan J,Liu H,et al. AIM2 gene silencing attenuates diabetic cardiomyopathy in type 2 diabetic rat model[J]. Life Sci,2019,221:249-258.
[35]Santiago-Fernández C,Pérez-Belmonte LM,Millán-Gómez M,et al. Overexpression of scavenger receptor and infiltration of macrophage in epicardial adipose tissue of patients with ischemic heart disease and diabetes[J]. J Transl Med,2019,17(1):95.
[36]Alquraini A,El Khoury J. Scavenger receptors[J]. Curr Biol,2020,30(14):R790-R795.
[37]Angin Y,Steinbusch LKM,Simons PJ,et al. CD36 inhibition prevents lipid accumulation and contractile dysfunction in rat cardiomyocytes[J]. Biochem J,2012,448(1):43-53.
[38]Li X,Li Z,Dong X,et al. Astragaloside Ⅳ attenuates myocardial dysfunction in diabetic cardiomyopathy rats through downregulation of CD36-mediated ferroptosis[J]. Phytother Res,2023,37(7):3042-3056.
[39]Unterholzner L. Innate immune sensing by cGAS-STING in animals reveals unexpected messengers [J]. Cell,2023,186(15):3145 -3147.
[40]Ma XM,Geng K,Law BY,et al. Lipotoxicity-induced mtDNA release promotes diabetic cardiomyopathy by activating the cGAS-STING pathway in obesity-related diabetes[J]. Cell Biol Toxicol,2023,39(1):277-299.
相似文献/References:
[1]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes
of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(6):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[2]杨沫,姜文锡.线粒体功能异常在糖尿病心肌病发病机制中的作用[J].心血管病学进展,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
YANG Mo,JIANG Wenxi.Mitochondrial Dysfunction of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
[3]朱月红,戴启明.糖尿病心肌病的内质网病变机制及干预[J].心血管病学进展,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
ZHU Yuehong,DAI Qiming.Advance of Mechanism and Intervention of Endoplasmic Reticulum in
Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
[4]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(6):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[5]武韧 常贵全 孙凤起 李鸿珠.硫化氢对糖尿病心肌病的保护作用[J].心血管病学进展,2021,(1):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
WU Ren,CHANG Guiquan,SUN Fengqi,et al.Protective Effect of Hydrogen Sulfide in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(6):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[6]宋元秀 崔鸣.线粒体动力学异常与相关心血管疾病[J].心血管病学进展,2021,(2):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
SONG Yuanxiu,CUI Ming.Correlation Between Mitochondrial Dynamics and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(6):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]马韵之 李剑 周鹏.糖尿病心肌病血清生物标志物研究进展[J].心血管病学进展,2021,(5):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
Serum Biomarkers of Diabetic Cardiomyopathy.[J].Advances in Cardiovascular Diseases,2021,(6):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
[8]李艳鹏 马依彤.糖尿病心肌病治疗策略的研究进展[J].心血管病学进展,2022,(9):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
LI Yanpeng,MA Yitong.Treatment Strategies for Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2022,(6):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
[9]曹兴丹 陈子仪 宋小刚 张玉秀 陈敏 汤吉超 李萍萍 陈永清 荆哲.EMRE在高糖环境中的变化对心肌细胞凋亡机制的研究[J].心血管病学进展,2022,(10):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
CAO XingdanCHEN ZiyiSONG XiaogangZHANG YuxiuCHEN MinTANG JichaoLI PingpingCHEN YongqingJING Zhe.Effect of High Glucose-Induced EMRE Expressions Changes on?yocardial Apoptosis[J].Advances in Cardiovascular Diseases,2022,(6):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
[10]林佳音 王莉莉 于小晴.胰高血糖素样肽-1受体激动剂对糖尿病心肌病的影响[J].心血管病学进展,2023,(11):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]
LIN Jiayin,WANG Lili,YU Xiaoqing.Effect of Glucagon-Like Peptide-1 Receptor Agonist on Diabetes Cardiomyopathy[J].Advances in Cardiovascular Diseases,2023,(6):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]