[1]刘恒洋 江洪 余锂镭.肥大细胞在心力衰竭中的作用及其潜在的自主神经机制[J].心血管病学进展,2024,(4):322.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.008]
 LIU Hengyang,JIANG Hong,YU Lilei.Role of Mast Cells in Heart Failure and Their Underlying Autonomic Neural Mechanisms[J].Advances in Cardiovascular Diseases,2024,(4):322.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.008]
点击复制

肥大细胞在心力衰竭中的作用及其潜在的自主神经机制()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年4期
页码:
322
栏目:
综述
出版日期:
2024-04-25

文章信息/Info

Title:
Role of Mast Cells in Heart Failure and Their Underlying Autonomic Neural Mechanisms
作者:
刘恒洋 江洪 余锂镭
(武汉大学人民医院心血管内科 武汉大学心血管病研究所 心血管病湖北省重点实验室 武汉大学心脏自主神经研究中心,湖北 武汉 430060 )
Author(s):
LIU HengyangJIANG HongYU Lilei
(Department of Cardiology,Renmin Hospital of Wuhan University,Cardiovascular Research Institute of Wuhan University,Hubei Key Laboratory of Cardiology,Cardiac Autonomic Nervous System Research Center of Wuhan University,Wuhan 430060,Hubei,China)
关键词:
肥大细胞心力衰竭脑心自主神经系统神经免疫
Keywords:
Mast cells Heart failure Brain-heart autonomic nerve system Neuroimmunity
DOI:
10.16806/j.cnki.issn.1004-3934.2024.02.008
摘要:
心力衰竭患者人数近年来不断增加,其治疗临床结果不理想。探究具体发病机制可以为心力衰竭治疗带来新的方向而改善临床结果。肥大细胞及其脑心自主神经机制是心力衰竭发生的重要病理机制之一。现就肥大细胞在心力衰竭中的作用及其脑心自主神经机制做一综述。
Abstract:
The number of patients with heart failure has been increasing in recent years,but the clinical outcome of its treatment is unsatisfactory. Exploring specific mechanisms can lead to new directions in the treatment of heart failure and improve clinical outcomes. Mast cells and their brain-heart autonomic mechanisms are one of the significant pathological mechanisms in the development of heart failure. The purpose of this review was to explore the role of mast cells in heart failure and their brain-heart autonomic mechanisms

参考文献/References:

[1] Savarese G,Becher PM,Lund LH,et al. Global burden of heart failure:a comprehensive and updated review of epidemiology[J]. Cardiovasc Res,2023,118(17):3272-3287.

[2] Piepoli MF,Adamo M,Barison A,et al. Preventing heart failure:a position paper of the Heart Failure Association in collaboration with the European Association of Preventive Cardiology[J]. Eur J Heart Fail,2022,24(1):143-168.

[3] Manolis AA,Manolis TA,Apostolopoulos EJ,et al.The role of the autonomic nervous system in cardiac arrhythmias:The neuro-cardiac axis,more foe than friend[J]. Trends Cardiovasc Med ,2021,31(5):290-302.

[4] Carnevale D. Neuroimmune axis of cardiovascular control:mechanisms and therapeutic implications[J]. Nat Rev Cardiol,2022,19(6):379-394.

[5] Groenewegen A,Rutten FH,Mosterd A,et al. Epidemiology of heart failure[J]. Eur J Heart Fail,2020,22(8):1342-1356.

[6] Varricchi G,Marone G,Kovanen PT. Cardiac mast cells:underappreciated immune cells in cardiovascular homeostasis and disease[J]. Trends Immunol,2020,41(8):734-746.

[7] St John AL,Rathore APS,Ginhoux F. New perspectives on the origins and heterogeneity of mast cells[J]. Nat Rev Immunol,2023,23(1):55-68.

[8] Skenteris NT,Hemme E,Delfos L,et al. Mast cells participate in smooth muscle cell reprogramming and atherosclerotic plaque calcification[J]. Vascul Pharmacol,2023,150:107167.

[9] Draberova L,Tumova M,Draber P. Molecular mechanisms of mast cell activation by cholesterol-dependent cytolysins[J]. Front Immunol,2021,12:670205.

[10] Liu X,Xu S,Li Y,et al. Identification of CALU and PALLD as potential biomarkers associated with immune infiltration in heart failure[J]. Front Cardiovasc Med,2021,8:774755.

[11] Liu X,Shi GP,Guo J. Innate immune cells in pressure overload-induced cardiac hypertrophy and remodeling[J]. Front Cell Dev Biol,2021,9:659666.

[12] Mina Y,Rinkevich-Shop S,Konen E,et al. Mast cell inhibition attenuates myocardial damage,adverse remodeling,and dysfunction during fulminant myocarditis in the rat[J]. J Cardiovasc Pharmacol Ther,2013,18(2):152-161.

[13] Meléndez GC,Li J,Law BA,et al. Substance P induces adverse myocardial remodelling via a mechanism involving cardiac mast cells[J]. Cardiovasc Res,2011,92(3):420-429.

[14] Zhao H,Yang H,Geng C,et al. Role of IgE-FcεR1 in pathological cardiac remodeling and dysfunction[J]. Circulation,2021,143(10):1014-1030.

[15] Hiromura M,Mori Y,Terasaki M,et al. Glucose-dependent insulinotropic polypeptide inhibits cardiac hypertrophy and fibrosis in diabetic mice via suppression of TGF-β2[J]. Diab Vasc Dis Res,2021,18(2):1479164121999034.

[16] Ye S,Huang H,Han X,et al. Dectin-1 acts as a non-classical receptor of AngⅡto induce cardiac remodeling[J]. Circ Res. 2023 Mar 17,132(6):707-722.

[17] Matsumoto T,Wada A,Tsutamoto T,et al. Chymase inhibition prevents cardiac fibrosis and improves diastolic dysfunction in the progression of heart failure[J]. Circulation,2003,107(20):2555-2558.

[18] Khosravi F,Ahmadvand N,Bellusci S,et al. The multifunctional contribution of FGF signaling to cardiac development,homeostasis,disease and repair[J]. Front Cell Dev Biol,2021,9:672935.

[19] Kologrivova I,Shtatolkina M,Suslova T,et al. Cells of the immune system in cardiac remodeling:main players in resolution of inflammation and repair after myocardial infarction[J]. Front Immunol,2021,12:664457.

[20] Colombe AS,Pidoux G. Cardiac cAMP-PKA signaling compartmentalization in myocardial infarction[J]. Cells,2021,10(4):922.

[21] Karim S,Chahal A,Khanji MY,et al. Autonomic cardiovascular control in health and disease[J]. Compr Physiol,2023,13(2):4493-4511.

[22] Farhat K,Stavrakis S. Identification of nexus points within the cardiac neuraxis:A sine qua non of neuromodulation therapies[J]. Heart Rhythm,2022,19(6):984-985.

[23] Quarti-Trevano F,Dell’Oro R,Cuspidi C,et al. Endothelial,vascular and sympathetic alterations as therapeutic targets in chronic heart failure[J]. Biomedicines,2023,11(3):803.

[24] Minatoguchi S. Heart failure and its treatment from the perspective of sympathetic nerve activity[J]. J Cardiol,2022,79(6):691-697.

[25] Mahmood A,Ray M,Dobalian A,et al. Insomnia symptoms and incident heart failure:a population-based cohort study[J]. Eur Heart J,2021,42(40):4169-4176.

[26] Jinawong K,Apaijai N,Chattipakorn N,et al. Cognitive impairment in myocardial infarction and heart failure[J]. Acta Physiol (Oxf),2021,232(1):e13642.

[27] Sobiepanek A,Kuryk ?,Garofalo M,et al. The multifaceted roles of mast cells in immune homeostasis,infections and cancers[J]. Int J Mol Sci,2022,23(4):2249.

[28] Mour?o AA,Shimoura CG,Andrade MA,et al. Local ionotropic glutamate receptors are required to trigger and sustain ramping of sympathetic nerve activity by hypothalamic paraventricular nucleus TNFα[J]. Am J Physiol Heart Circ Physiol,2021,321(3):H580-H591.

[29] Levick SP. Histamine receptors in heart failure[J]. Heart Fail Rev,2022,27(4):1355-1372.

[30] Neumann J,Kirchhefer U,Dhein S,et al. The roles of cardiovascular H2-histamine receptors under normal and pathophysiological conditions[J]. Front Pharmacol,2021,12:732842.

[31] McCaffrey SL,Lim G,Bullock M,et al. The histamine 3 receptor is expressed in the heart and its activation opposes adverse cardiac remodeling in the angiotensin Ⅱ mouse model[J]. Int J Mol Sci,2020,21(24):9757.

[32] Vázquez-Vázquez H,Gonzalez-Sandoval C,Vega AV,et al. Histamine H3 receptor activation modulates glutamate release in the corticostriatal synapse by acting at CaV2.1(P/Q-type) calcium channels and GIRK(KIR3) potassium channels[J]. Cell Mol Neurobiol,2022,42(3):817-828.

[33] Sandhu JK,Kulka M. Decoding mast cell-microglia communication in neurodegenerative diseases[J]. Int J Mol Sci,2021,22(3):1093.

[34] Grogan A,Lucero EY,Jiang H,et al. Pathophysiology and pharmacology of G protein-coupled receptors in the heart[J]. Cardiovasc Res,2023,119(5):1117-1129.

[35] Solimando AG,Desantis V,Ribatti D. Mast cells and interleukins[J]. Int J Mol Sci,2022,23(22):14004.

[36] Yue J,Tan Y,Huan R,et al. Mast cell activation mediates blood-brain barrier impairment and cognitive dysfunction in septic mice in a histamine-dependent pathway[J]. Front Immunol,2023,14:1090288.

[37] Virtuoso A,de Luca C,Korai SA,et al. Neuroinflammation and glial activation in the central nervous system:a metabolic perspective[J]. Neural Regen Res,2023,18(5):1025-1026.

[38] Lauritano D,Mastrangelo F,D’Ovidio C,et al. Activation of mast cells by neuropeptides:the role of pro-inflammatory and anti-inflammatory cytokines[J]. Int J Mol Sci,2023,24(5):4811.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(4):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(4):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(4):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(4):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(4):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
 GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(4):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(4):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
 WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(4):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]

更新日期/Last Update: 2024-05-31