参考文献/References:
[1] Savarese G,Becher PM,Lund LH,et al. Global burden of heart failure:a comprehensive and updated review of epidemiology[J]. Cardiovasc Res,2023,118(17):3272-3287.
[2] Piepoli MF,Adamo M,Barison A,et al. Preventing heart failure:a position paper of the Heart Failure Association in collaboration with the European Association of Preventive Cardiology[J]. Eur J Heart Fail,2022,24(1):143-168.
[3] Manolis AA,Manolis TA,Apostolopoulos EJ,et al.The role of the autonomic nervous system in cardiac arrhythmias:The neuro-cardiac axis,more foe than friend[J]. Trends Cardiovasc Med ,2021,31(5):290-302.
[4] Carnevale D. Neuroimmune axis of cardiovascular control:mechanisms and therapeutic implications[J]. Nat Rev Cardiol,2022,19(6):379-394.
[5] Groenewegen A,Rutten FH,Mosterd A,et al. Epidemiology of heart failure[J]. Eur J Heart Fail,2020,22(8):1342-1356.
[6] Varricchi G,Marone G,Kovanen PT. Cardiac mast cells:underappreciated immune cells in cardiovascular homeostasis and disease[J]. Trends Immunol,2020,41(8):734-746.
[7] St John AL,Rathore APS,Ginhoux F. New perspectives on the origins and heterogeneity of mast cells[J]. Nat Rev Immunol,2023,23(1):55-68.
[8] Skenteris NT,Hemme E,Delfos L,et al. Mast cells participate in smooth muscle cell reprogramming and atherosclerotic plaque calcification[J]. Vascul Pharmacol,2023,150:107167.
[9] Draberova L,Tumova M,Draber P. Molecular mechanisms of mast cell activation by cholesterol-dependent cytolysins[J]. Front Immunol,2021,12:670205.
[10] Liu X,Xu S,Li Y,et al. Identification of CALU and PALLD as potential biomarkers associated with immune infiltration in heart failure[J]. Front Cardiovasc Med,2021,8:774755.
[11] Liu X,Shi GP,Guo J. Innate immune cells in pressure overload-induced cardiac hypertrophy and remodeling[J]. Front Cell Dev Biol,2021,9:659666.
[12] Mina Y,Rinkevich-Shop S,Konen E,et al. Mast cell inhibition attenuates myocardial damage,adverse remodeling,and dysfunction during fulminant myocarditis in the rat[J]. J Cardiovasc Pharmacol Ther,2013,18(2):152-161.
[13] Meléndez GC,Li J,Law BA,et al. Substance P induces adverse myocardial remodelling via a mechanism involving cardiac mast cells[J]. Cardiovasc Res,2011,92(3):420-429.
[14] Zhao H,Yang H,Geng C,et al. Role of IgE-FcεR1 in pathological cardiac remodeling and dysfunction[J]. Circulation,2021,143(10):1014-1030.
[15] Hiromura M,Mori Y,Terasaki M,et al. Glucose-dependent insulinotropic polypeptide inhibits cardiac hypertrophy and fibrosis in diabetic mice via suppression of TGF-β2[J]. Diab Vasc Dis Res,2021,18(2):1479164121999034.
[16] Ye S,Huang H,Han X,et al. Dectin-1 acts as a non-classical receptor of AngⅡto induce cardiac remodeling[J]. Circ Res. 2023 Mar 17,132(6):707-722.
[17] Matsumoto T,Wada A,Tsutamoto T,et al. Chymase inhibition prevents cardiac fibrosis and improves diastolic dysfunction in the progression of heart failure[J]. Circulation,2003,107(20):2555-2558.
[18] Khosravi F,Ahmadvand N,Bellusci S,et al. The multifunctional contribution of FGF signaling to cardiac development,homeostasis,disease and repair[J]. Front Cell Dev Biol,2021,9:672935.
[19] Kologrivova I,Shtatolkina M,Suslova T,et al. Cells of the immune system in cardiac remodeling:main players in resolution of inflammation and repair after myocardial infarction[J]. Front Immunol,2021,12:664457.
[20] Colombe AS,Pidoux G. Cardiac cAMP-PKA signaling compartmentalization in myocardial infarction[J]. Cells,2021,10(4):922.
[21] Karim S,Chahal A,Khanji MY,et al. Autonomic cardiovascular control in health and disease[J]. Compr Physiol,2023,13(2):4493-4511.
[22] Farhat K,Stavrakis S. Identification of nexus points within the cardiac neuraxis:A sine qua non of neuromodulation therapies[J]. Heart Rhythm,2022,19(6):984-985.
[23] Quarti-Trevano F,Dell’Oro R,Cuspidi C,et al. Endothelial,vascular and sympathetic alterations as therapeutic targets in chronic heart failure[J]. Biomedicines,2023,11(3):803.
[24] Minatoguchi S. Heart failure and its treatment from the perspective of sympathetic nerve activity[J]. J Cardiol,2022,79(6):691-697.
[25] Mahmood A,Ray M,Dobalian A,et al. Insomnia symptoms and incident heart failure:a population-based cohort study[J]. Eur Heart J,2021,42(40):4169-4176.
[26] Jinawong K,Apaijai N,Chattipakorn N,et al. Cognitive impairment in myocardial infarction and heart failure[J]. Acta Physiol (Oxf),2021,232(1):e13642.
[27] Sobiepanek A,Kuryk ?,Garofalo M,et al. The multifaceted roles of mast cells in immune homeostasis,infections and cancers[J]. Int J Mol Sci,2022,23(4):2249.
[28] Mour?o AA,Shimoura CG,Andrade MA,et al. Local ionotropic glutamate receptors are required to trigger and sustain ramping of sympathetic nerve activity by hypothalamic paraventricular nucleus TNFα[J]. Am J Physiol Heart Circ Physiol,2021,321(3):H580-H591.
[29] Levick SP. Histamine receptors in heart failure[J]. Heart Fail Rev,2022,27(4):1355-1372.
[30] Neumann J,Kirchhefer U,Dhein S,et al. The roles of cardiovascular H2-histamine receptors under normal and pathophysiological conditions[J]. Front Pharmacol,2021,12:732842.
[31] McCaffrey SL,Lim G,Bullock M,et al. The histamine 3 receptor is expressed in the heart and its activation opposes adverse cardiac remodeling in the angiotensin Ⅱ mouse model[J]. Int J Mol Sci,2020,21(24):9757.
[32] Vázquez-Vázquez H,Gonzalez-Sandoval C,Vega AV,et al. Histamine H3 receptor activation modulates glutamate release in the corticostriatal synapse by acting at CaV2.1(P/Q-type) calcium channels and GIRK(KIR3) potassium channels[J]. Cell Mol Neurobiol,2022,42(3):817-828.
[33] Sandhu JK,Kulka M. Decoding mast cell-microglia communication in neurodegenerative diseases[J]. Int J Mol Sci,2021,22(3):1093.
[34] Grogan A,Lucero EY,Jiang H,et al. Pathophysiology and pharmacology of G protein-coupled receptors in the heart[J]. Cardiovasc Res,2023,119(5):1117-1129.
[35] Solimando AG,Desantis V,Ribatti D. Mast cells and interleukins[J]. Int J Mol Sci,2022,23(22):14004.
[36] Yue J,Tan Y,Huan R,et al. Mast cell activation mediates blood-brain barrier impairment and cognitive dysfunction in septic mice in a histamine-dependent pathway[J]. Front Immunol,2023,14:1090288.
[37] Virtuoso A,de Luca C,Korai SA,et al. Neuroinflammation and glial activation in the central nervous system:a metabolic perspective[J]. Neural Regen Res,2023,18(5):1025-1026.
[38] Lauritano D,Mastrangelo F,D’Ovidio C,et al. Activation of mast cells by neuropeptides:the role of pro-inflammatory and anti-inflammatory cytokines[J]. Int J Mol Sci,2023,24(5):4811.
相似文献/References:
[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(4):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(4):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(4):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on
Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(4):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(4):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(4):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(4):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(4):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]