参考文献/References:
[1] Lippi G,Sanchis-Gomar F,Cervellin G. Global epidemiology of atrial fibrillation:an increasing epidemic and public health challenge[J]. Int J Stroke,2021,16(2):217-221.
[2] Wang Z,Chen Z,Wang X,et al. The disease burden of atrial fibrillation in China from a national cross-sectional survey[J]. Am J Cardiol,2018,122(5):793-798.
[3] Chen M,Li C,Liao P,et al. Epidemiology,management,and outcomes of atrial fibrillation among 30 million citizens in Shanghai,China from 2015 to 2020:a medical insurance database study[J]. Lancet Reg Health West Pac,2022,23:100470.
[4] Yuan M,Gong M,He J,et al. IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling[J]. Redox Biol,2022,52:102289.
[5] Zhao J,Yu L,Xue X,et al. Diminished α7 nicotinic acetylcholine receptor (α7nAChR) rescues amyloid-β induced atrial remodeling by oxi-CaMKⅡ/MAPK/AP-1 axis-mediated mitochondrial oxidative stress[J]. Redox Biol,2023,59:102594.
[6] Mason FE,Pronto JRD,Alhussini K,et al. Cellular and mitochondrial mechanisms of atrial fibrillation[J]. Basic Res Cardiol,2020,115(6):72.
[7] Zorov DB,Juhaszova M,Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiol Rev,2014,94(3):909-950.
[8] Bertero E,Maack C. Calcium signaling and reactive oxygen species in mitochondria[J]. Circ Res,2018,122(10):1460-1478.
[9] Liu C,Ma N,Guo Z,et al. Relevance of mitochondrial oxidative stress to arrhythmias:innovative concepts to target treatments[J]. Pharmacol Res,2022,175:106027.
[10] Yang X,An N,Zhong C,et al. Enhanced cardiomyocyte reactive oxygen species signaling promotes ibrutinib-induced atrial fibrillation[J]. Redox Biol,2020,30:101432.
[11] Sagris M,Vardas EP,Theofilis P,et al. Atrial fibrillation:pathogenesis,predisposing factors,and genetics[J]. Int J Mol Sci,2021,23(1):6.
[12] Walkon LL,Strubbe-Rivera JO,Bazil JN. Calcium overload and mitochondrial metabolism[J]. Biomolecules,2022,12(12):1891.
[13] Zhang M,Qi J,He Q,et al. Liquiritigenin protects against myocardial ischemic by inhibiting oxidative stress,apoptosis,and L-type Ca2+ channels[J]. Phytother Res,2022,36(9):3619-3631.
[14] Garbincius JF,Elrod JW. Mitochondrial calcium exchange in physiology and disease[J]. Physiol Rev,2022,102(2):893-992.
[15] Zhang T,Liu Q,Gao W,et al. The multifaceted regulation of mitophagy by endogenous metabolites[J]. Autophagy,2022,18(6):1216-1239.
[16] Gambardella J,Sorriento D,Ciccarelli M,et al. Functional role of mitochondria in arrhythmogenesis[J]. Adv Exp Med Biol,2017,982:191-202.
[17] Sch?nleitner P,Schotten U,Antoons G. Mechanosensitivity of microdomain calcium signalling in the heart[J]. Prog Biophys Mol Biol,2017,130(Pt B):288-301.
[18] Onal B,Gratz D,Hund TJ. Ca2+/calmodulin-dependent kinase Ⅱ-dependent regulation of atrial myocyte late Na+ current,Ca2+ cycling,and excitability:a mathematical modeling study[J]. Am J Physiol Heart Circ Physiol,2017,313(6):H1227-H1239.
[19] He M,Qiu J,Wang Y,et al. Caveolin-3 and arrhythmias:insights into the molecular mechanisms[J]. J Clin Med,2022,11(6):1595.
[20] Liu M,Liu H,Dudley SC Jr. Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel[J]. Circ Res,2010,107(8):967-974.
[21]Yang R,Ernst P,Song J,et al. Mitochondrial-mediated oxidative Ca2+/calmodulin-dependent kinase Ⅱ activation induces early afterdepolarizations in guinea pig cardiomyocytes:an in silico study[J]. J Am Heart Assoc,2018,7(15):e008939.
[22] Zhazykbayeva S,Pabel S,Mügge A,et al. The molecular mechanisms associated with the physiological responses to inflammation and oxidative stress in cardiovascular diseases[J]. Biophys Rev,2020,12(4):947-968.
[23]Picard M,Shirihai OS. Mitochondrial signal transduction[J]. Cell Metab,2022,34(11):1620-1653.
[24] Sag CM,Wagner S,Maier LS. Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes[J]. Free Radic Biol Med,2013,63:338-349.
[25] Yoo S,Aistrup G,Shiferaw Y,et al. Oxidative stress creates a unique,CaMKⅡ-mediated substrate for atrial fibrillation in heart failure[J]. JCI Insight,2018,3(21):e120728.
[26] Aimoto M,Yagi K,Ezawa A,et al. Chronic volume overload caused by abdominal aorto-venocaval shunt provides arrhythmogenic substrates in the rat atrium[J]. Biol Pharm Bull,2022,45(5):635-642.
[27] Kayki-Mutlu G,Koch WJ. Nitric oxide and S-nitrosylation in cardiac regulation:G protein-coupled receptor kinase-2 and β-arrestins as targets[J]. Int J Mol Sci,2021,22(2):521.
[28] McCauley MD,Hong L,Sridhar A,et al. Ion channel and structural remodeling in obesity-mediated atrial fibrillation[J]. Circ Arrhythm Electrophysiol,2020,13(8):e008296.
[29] Svoboda LK,Reddie KG,Zhang L,et al. Redox-sensitive sulfenic acid modification regulates surface expression of the cardiovascular voltage-gated potassium channel Kv1.5[J]. Circ Res,2012,111(7):842-853.
[30] Miura T,Liu Y,Goto M,et al. Mitochondrial ATP-sensitive K+ channels play a role in cardioprotection by Na+-H+ exchange inhibition against ischemia/reperfusion injury[J]. J Am Coll Cardiol,2001,37(3):957-963.
[31] Guo YH,Yang YQ. Atrial fibrillation:focus on myocardial connexins and gap junctions[J]. Biology (Basel),2022,11(4):489.
[32] Santos-Miranda A,Noureldin M,Bai D. Effects of temperature on transjunctional voltage-dependent gating kinetics in Cx45 and Cx40 gap junction channels[J]. J Mol Cell Cardiol,2019,127:185-193.
[33] Jassim A,Aoyama H,Ye WG,et al. Engineered Cx40 variants increased docking and function of heterotypic Cx40/Cx43 gap junction channels[J]. J Mol Cell Cardiol,2016,90:11-20.
[34] Luo B,Yan Y,Zeng Z,et al. [Corrigendum] Connexin 43 reduces susceptibility to sympathetic atrial fibrillation[J]. Int J Mol Med,2021,47(1):410.
[35] Qiu Y,Zheng J,Chen S,et al. Connexin mutations and hereditary diseases[J]. Int J Mol Sci,2022,23(8):4255.
[36] Frank M,Wirth A,Andrié RP,et al. Connexin45 provides optimal atrioventricular nodal conduction in the adult mouse heart[J]. Circ Res,2012,111(12):1528-1538.
[37] Seki A,Ishikawa T,Daumy X,et al. Progressive atrial conduction defects associated with bone malformation caused by a connexin-45 mutation[J]. J Am Coll Cardiol,2017,70(3):358-370.
相似文献/References:
[1]贺鹏康,周菁.心房颤动治疗新技术——冷冻球囊消融[J].心血管病学进展,2016,(1):1.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.001]
HE Pengkang,ZHOU Jing.Cryoballoon Ablation, A Novel Technology for Atrial Fibrillation Treatment[J].Advances in Cardiovascular Diseases,2016,(12):1.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.001]
[2]都明辉,施海峰*,佟佳宾,等.心房颤动消融相关性无症状性脑缺血[J].心血管病学进展,2016,(1):3.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.002]
DU Minghui,SHI Haifeng*,TONG Jiabin,et al.Silent Cerebral Ischemia Related to Atrial Fibrillation Ablation[J].Advances in Cardiovascular Diseases,2016,(12):3.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.002]
[3]郑环杰,综述,肖骅,等.心房颤动抗栓治疗研究进展[J].心血管病学进展,2016,(2):142.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.012]
ZHENG Huanjie,XIAO Hua.Progress of Antithrombotic Therapy in Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(12):142.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.012]
[4]张清,综述,罗素新,等.新型Xa 因子抑制剂———依度沙班在心房颤动患者抗凝治疗中的研究进展[J].心血管病学进展,2016,(2):151.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.014]
ZHANG Qing,LUO Suxin,TANG Jiong.Novel Factor Xa Inhibitors—Edoxaban in Prevention of Stroke in
Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(12):151.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.014]
[5]陈忠秀,综述,饶莉,等.线粒体能量代谢异常与病理性心肌肥大的研究进展[J].心血管病学进展,2016,(3):247.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.008]
CHEN Zhongxiu,RAO Li.Mitochondrial Energy Metabolism and Pathological Cardiac Hypertrophy[J].Advances in Cardiovascular Diseases,2016,(12):247.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.008]
[6]胡红玲,综述,罗素新,等.预防非瓣膜性心房颤动性脑卒中的治疗新进展[J].心血管病学进展,2016,(3):250.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.009]
HU Hongling,LUO Suxin.New Progress in the Treatment for Cerebral Apoplexy of Nonvalvular
Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(12):250.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.009]
[7]王超,杨国澍,综述,等.关附甲素治疗心房颤动的研究进展[J].心血管病学进展,2016,(3):254.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.010]
WANG Chao,YANG Guoshu,CAI Lin,et al.Research Progress of the Treatment of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(12):254.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.010]
[8]徐小东,综述,杨东辉,等.决奈达隆治疗心房颤动的现状及展望[J].心血管病学进展,2016,(4):368.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.011]
XU Xiaodong,YANG Donghui.Status and Prospect of Dronedarone in Treating Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(12):368.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.011]
[9]张莎,储国俊,吴弘.经导管左心耳封堵术的临床应用进展[J].心血管病学进展,2015,(5):547.[doi:10.3969/j.issn.1004-3934.2015.05.006]
ZHANG Sha,CHU Guojun,WU Hong.Clinial Application Advances in Left Atrial Appendage Closure[J].Advances in Cardiovascular Diseases,2015,(12):547.[doi:10.3969/j.issn.1004-3934.2015.05.006]
[10]汪俊,杨浩.心房颤动射频消融的术式演变[J].心血管病学进展,2015,(5):574.[doi:10.3969/j.issn.1004-3934.2015.05.013]
WANG Jun,YANG Hao.Evolution of Radiofrequency Ablation of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2015,(12):574.[doi:10.3969/j.issn.1004-3934.2015.05.013]
[11]喜林强 孙华鑫 商鲁翔 汤宝鹏 周贤惠.心房能量代谢重塑和PPARγ靶向干预在心房颤动中的研究进展[J].心血管病学进展,2023,(10):926.[doi:10.16806/j.cnki.issn.1004-3934.2023.10.014]
XI Linqiang,SUN Huaxin,SHANG Luxiang,et al.Atrial Energy Metabolism Remodeling and Targeted Intervention of PPAR in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2023,(12):926.[doi:10.16806/j.cnki.issn.1004-3934.2023.10.014]