[1]陈鹏莉 宋紫微 张曼玉 李丽丽.干细胞来源外泌体miRNA介导心脏修复的研究进展[J].心血管病学进展,2023,(7):636.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.014]
 CHEN Pengli,SONG Ziwei,ZHANG Manyu,et al.Exosomal miRNA Derived from Stem Cells in Mediating Cardiac Repair[J].Advances in Cardiovascular Diseases,2023,(7):636.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.014]
点击复制

干细胞来源外泌体miRNA介导心脏修复的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年7期
页码:
636
栏目:
综述
出版日期:
2023-07-25

文章信息/Info

Title:
Exosomal miRNA Derived from Stem Cells in Mediating Cardiac Repair
作者:
陈鹏莉 宋紫微 张曼玉 李丽丽
(哈尔滨医科大学附属第二医院心内科,黑龙江 哈尔滨 150081)
Author(s):
CHEN PengliSONG ZiweiZHANG ManyuLI Lili
(Department of Cardiology,The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang,China)
关键词:
干细胞外泌体心脏修复药物递送纳米医学
Keywords:
Stem cellExosomalCardiac repairDrug deliveryNanomedicine
DOI:
10.16806/j.cnki.issn.1004-3934.2023.07.014
摘要:
在过去几十年中,急性心肌梗死采用开通罪犯冠状动脉和血运重建术等新技术已经显著改善了心肌梗死的预后,但仍有许多患者心肌梗死后出现不良的心脏重构及心力衰竭。随着心力衰竭的流行,急需一种新的治疗方法,无细胞疗法是一种很有前途的治疗方法,在多种急慢性心脏病中调节并促进心脏修复。现就干细胞来源外泌体miRNA在心肌损伤后介导心脏修复的研究进展进行综述。
Abstract:
Although new technologies such as opening criminal coronary arteries and revascularization have markedly enhanced the prognosis of acute myocardial infarction in recent decades,several patients still have poor cardiovascular remodeling and heart failure after myocardial infarction. Given the prevalence of heart failure, there is an urgent need for a new approach to treatment. Cellular-free therapy is a promising therapeutic approach that has prospects for regulating and promoting cardiac repair in a variety of acute and chronic heart diseases. This review examines progress of exosom al miRNA derived from stem cell in mediating cardiac repair after myocardial lesion.

参考文献/References:

[1] Andrews PW,Cavagnaro J,Deans R,et al. Harmonizing standards for producing clinical-grade therapies from pluripotent stem cells [J]. Nat Biotechnol,2014,32(8):724-726.

[2] Kishore R, Khan M. More than tiny sacks: stem cell exosomes as cell-free modality for cardiac repair [J]. Circ Res,2016,118(2):330-343.

[3] Koritzinsky EH,Street JM,Star RA,et al. Quantification of exosomes [J]. J Cell Physiol,2017,232(7):1587-1590.

[4] Kalluri R,LeBleu VS. The biology,function,and biomedical applications of exosomes [J]. Science,2020,367(6478).

[5] Liang Y,Duan L,Lu J,et al. Engineering exosomes for targeted drug delivery [J]. Theranostics,2021,11(7):3183-3195.

[6] Zhang H,Freitas D,Kim HS,et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation [J]. Nat Cell Biol,2018,20(3):332-343.

[7] Kir D,Schnettler E,Modi S,et al. Regulation of angiogenesis by microRNAs in cardiovascular diseases [J]. Angiogenesis,2018,21(4):699-710.

[8] Santovito D,Weber C. Non-canonical features of microRNAs:paradigms emerging from cardiovascular disease [J]. Nat Rev Cardiol,2022,19(9):620-638.

[9] Wu Q,Wang J,Tan WLW,et al. Extracellular vesicles from human embryonic stem cell-derived cardiovascular progenitor cells promote cardiac infarct healing through reducing cardiomyocyte death and promoting angiogenesis [J]. Cell Death Dis,2020,11(5):354.

[10] Zhu D,Wang Y,Thomas M,et al. Exosomes from adipose-derived stem cells alleviate myocardial infarction via microRNA-31/FIH1/HIF-1α pathway [J]. J Mol Cell Cardiol,2022,162:10-19.

[11] de Almeida Oliveira NC,Neri EA,Silva CM,et al. Multicellular regulation of miR-196a-5p and miR-425-5 from adipose stem cell-derived exosomes and cardiac repair [J]. Clin Sci (Lond),2022,136(17):1281-1301.

[12] Watterston C,Zeng L,Onabadejo A,et al. MicroRNA26 attenuates vascular smooth muscle maturation via endothelial BMP signalling [J]. PLoS Genet,2019,15(5):e1008163.

[13] Arif M,Pandey R,Alam P,et al. MicroRNA-210-mediated proliferation,survival,and angiogenesis promote cardiac repair post myocardial infarction in rodents [J]. J Mol Med (Berl),2017,95(12):1369-1385.

[14] Gao L,Wang L,Wei Y,et al. Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine [J]. Sci Transl Med,2020,12(561):eaay1318.

[15] Song Y,Zhang C,Zhang J,et al. Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction [J]. Theranostics,2019,9(8):2346-2360.

[16] Galow AM,Wolfien M,Müller P,et al. Integrative cluster analysis of whole hearts reveals proliferative cardiomyocytes in adult mice [J]. Cells,2020,9(5):1144.

[17] Eulalio A,Mano M,Dal Ferro M,et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature,2012,492(7429):376-381.

[18] Gabisonia K,Prosdocimo G,Aquaro GD,et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs [J]. Nature,2019,569(7756):418-422.

[19] Gao F,Kataoka M,Liu N,et al. Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction [J]. Nat Commun,2019,10(1):1802.

[20] Shinde AV,Frangogiannis NG. Fibroblasts in myocardial infarction:a role in inflammation and repair [J]. J Mol Cell Cardiol,2014,70:74-82.

[21] Zhang Y,Wang Z,Lan D,et al. MicroRNA-24-3p alleviates cardiac fibrosis by suppressing cardiac fibroblasts mitophagy via downregulating PHB2 [J]. Pharmacol Res,2022,177:106124.

[22] Sun L,Zhu W,Zhao P,et al. Down-regulated exosomal microRNA-221 - 3p derived from senescent mesenchymal stem cells impairs heart repair [J]. Front Cell Dev Biol,2020,8:263.

[23] Wang Z,Wang Z,Gao L,et al. miR -222 inhibits cardiac fibrosis in diabetic mice heart via regulating Wnt/β-catenin-mediated endothelium to mesenchymal transition [J]. J Cell Physiol, 2020,235(3):2149-2160.

[24] Weil BR,Neelamegham S. Selectins and immune cells in acute myocardial infarction and post-infarction ventricular remodeling:pathophysiology and novel treatments [J]. Front Immunol,2019,10:300.

[25] Reis M,Mavin E,Nicholson L,et al. Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function [J]. Front Immunol,2018,9:2538.

[26] Zhao J,Li X,Hu J,et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization [J]. Cardiovasc Res,2019(7):115(7):1205-1216.

[27] Zhu J,Yao K,Guo J,et al. miR-181a and miR-150 regulate dendritic cell immune inflammatory responses and cardiomyocyte apoptosis via targeting JAK1-STAT1/c-Fos pathway [J]. J Cell Mol Med,2017,21(11):2884-2895.

[28] Xu R,Zhang F,Chai R,et al. Exosomes derived from pro‐inflammatory bone marrow‐derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization [J]. J Cell Mol Med,2019,23(11):7617-7631.

[29] Armstrong JP,Holme MN,Stevens MM. Re-engineering extracellular vesicles as smart nanoscale therapeutics [J]. ACS Nano,2017,11(1):69-83.

[30] Li YJ,Wu JY,Liu J,et al. Artificial exosomes for translational nanomedicine [J]. J Nanobiotechnology,2021,19(1):242.

[31] Li Z,Zhou X,Wei M,et al. In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9 [J]. Nano Lett,2019,19(1):19-28.

[32] Wang X,Chen Y,Zhao Z,et al. Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction [J]. J Am Heart Assoc,2018,7(15):e008737.

[33] Vandergriff A,Huang K,Shen D,et al. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide [J]. Theranostics,2018,8(7):1869-1878.

[34] Ni J,Liu X,Yin Y,et al. Exosomes derived from TIMP2-modified human umbilical cord mesenchymal stem cells enhance the repair effect in rat model with myocardial infarction possibly by the Akt/Sfrp2 pathway [J]. Oxid Med Cell Longev,2019,2019:1958941.

[35] Aksoy YA,Yang B,Chen W,et al. Spatial and temporal control of CRISPR-Cas9-mediated gene editing delivered via a light-triggered liposome system [J]. ACS Appl Mater Interfaces,2020,12(47):52433-52444.

[36] Hammons JA,Ingólfsson HI,Lee JRI,et al. Decoupling copolymer,lipid and carbon nanotube interactions in hybrid,biomimetic vesicles [J]. Nanoscale,2020,12(11):6545-6555.

[37] Zhang N,Song Y,Huang Z,et al. Monocyte mimics improve mesenchymal stem cell-derived extracellular vesicle homing in a mouse MI/RI model [J]. Biomaterials,2020,255:120168.

[38] Zhao S,Xu Z,Wang H,et al. Bioengineering of injectable encapsulated aggregates of pluripotent stem cells for therapy of myocardial infarction [J]. Nat Commun,2016,7:13306.

[39] Zhu D,Li Z,Huang K,et al. Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair [J]. Nat Commun,2021,12(1):1412.

[40] Hu S,Wang X,Li Z,et al. Platelet membrane and stem cell exosome hybrid enhances cellular uptake and targeting to heart injury [J]. Nano Today,2021,39:101210.

[41] Yao J,Huang K,Zhu D,et al. A minimally invasive exosome spray repairs heart after myocardial i nfarction [J]. ACS Nano,2021,15(7):11099-11111.

相似文献/References:

[1]宋菲,综述,俞梦越,等.干细胞来源的外泌体:心肌梗死治疗新启示[J].心血管病学进展,2016,(2):125.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.007]
 SONG Fei,YU Mengyue.Exosomes Derived from Stem Cells: Novel Approach in Treatment of Myocardial Infarction[J].Advances in Cardiovascular Diseases,2016,(7):125.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.007]
[2]姚雯,毛露,孙硕,等.心源性外泌体作为冠心病标志物和新靶点展望[J].心血管病学进展,2019,(6):844.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.002]
 YAO Wen,MAO Lu,SUN Shuo,et al.Exogenous Exosome as A New Marker and Target of Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(7):844.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.002]
[3]韦余 胡科 温钞麟 邓玮.骨髓间充质干细胞干预心肌纤维化的增效措施[J].心血管病学进展,2019,(5):774.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.027]
 Wei YuHu KeWen Chao LinDeng Wei.Synergistic Measures of Bone Marrow Mesenchymal Stem Cells in Intervention of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2019,(7):774.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.027]
[4]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
 Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(7):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[5]张伟 木胡牙提.外泌体源性miRNAs在心血管疾病中的研究进展[J].心血管病学进展,2020,(2):111.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.002]
 Zhang Wei,Muhuyati.Exogenous miRNAs in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(7):111.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.002]
[6]李一凡 张智伟.巨噬细胞相关的外泌体在心血管疾病中的作用研究进展[J].心血管病学进展,2020,(8):839.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.014]
 LI Yifan,ZHANG Zhiwei.Role of Macrophage-Related Exosomes in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(7):839.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.014]
[7]叶莎 杨翠玲 郑媛媛.骨髓间充质干细胞来源外泌体通过PI3K/Akt途径减轻H2O2诱导心肌细胞损伤[J].心血管病学进展,2022,(3):269.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 YE Sha,YANG Cuiling,ZHENG Yuanyuan.Bone Marrow Mesenchymal Stem Cells Derived Exosomes Attenuate H 2O2 Induced Cardiomyocyte Injury Via PI3K/Akt Pathway[J].Advances in Cardiovascular Diseases,2022,(7):269.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[8]戴越 周帆 穆军升.外源性电刺激诱导干细胞心肌向分化的研究进展[J].心血管病学进展,2022,(4):289.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.001]
 DAI Yue,ZHOU Fan,MU Junsheng.The Use of Electrical Stimulation to Induce Cardiac Differentiation of?tem Cells for the Treatment of Myocardial Infarction[J].Advances in Cardiovascular Diseases,2022,(7):289.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.001]
[9]俞佳丽 景雨 张剑 陈楚 陆齐 顾周山 陈子微 周大胜 景宏美 潘丽华.间充质干细胞来源的外泌体在心肌梗死治疗中的研究进展[J].心血管病学进展,2022,(4):341.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.013]
 YU JialiJING YuZHANG JianCHEN ChuLU QiGU ZhoushanCHEN ZiweiZHOU DashenJING HongmeiPAN Lihua.Exosomes Derived from Mesenchymal Stem Cells?n the Treatment of Myocardial Infarction[J].Advances in Cardiovascular Diseases,2022,(7):341.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.013]
[10]杨珂欣 李星辉 肖晨朦 姚晓涛 林萌 蔡佳.间充质干细胞来源外泌体改善心肌纤维化的研究进展[J].心血管病学进展,2022,(12):1123.[doi:10.16806/j.cnki.issn.1004-3934.20.10.015]
 YANG Kexin LI Xinghui XIAO ChenmengYAO XiaotaoLIN MengCAI Jia.Improving Myocardial Fibrosis by Exosome Derived from Mesenchymal Stem Cell[J].Advances in Cardiovascular Diseases,2022,(7):1123.[doi:10.16806/j.cnki.issn.1004-3934.20.10.015]
[11]肖轶 余国龙.不同干细胞来源的外泌体在缺血性心脏病中的促血管新生作用[J].心血管病学进展,2022,(4):293.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]
 XIAO Yi,YU Guolong?/html>.Application of Exosomes Derived from Various Stem Cells?n Ischemic Heart Disease[J].Advances in Cardiovascular Diseases,2022,(7):293.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]

更新日期/Last Update: 2023-08-18