参考文献/References:
[1] Andrews PW,Cavagnaro J,Deans R,et al. Harmonizing standards for producing clinical-grade therapies from pluripotent stem cells [J]. Nat Biotechnol,2014,32(8):724-726.
[2] Kishore R, Khan M. More than tiny sacks: stem cell exosomes as cell-free modality for cardiac repair [J]. Circ Res,2016,118(2):330-343.
[3] Koritzinsky EH,Street JM,Star RA,et al. Quantification of exosomes [J]. J Cell Physiol,2017,232(7):1587-1590.
[4] Kalluri R,LeBleu VS. The biology,function,and biomedical applications of exosomes [J]. Science,2020,367(6478).
[5] Liang Y,Duan L,Lu J,et al. Engineering exosomes for targeted drug delivery [J]. Theranostics,2021,11(7):3183-3195.
[6] Zhang H,Freitas D,Kim HS,et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation [J]. Nat Cell Biol,2018,20(3):332-343.
[7] Kir D,Schnettler E,Modi S,et al. Regulation of angiogenesis by microRNAs in cardiovascular diseases [J]. Angiogenesis,2018,21(4):699-710.
[8] Santovito D,Weber C. Non-canonical features of microRNAs:paradigms emerging from cardiovascular disease [J]. Nat Rev Cardiol,2022,19(9):620-638.
[9] Wu Q,Wang J,Tan WLW,et al. Extracellular vesicles from human embryonic stem cell-derived cardiovascular progenitor cells promote cardiac infarct healing through reducing cardiomyocyte death and promoting angiogenesis [J]. Cell Death Dis,2020,11(5):354.
[10] Zhu D,Wang Y,Thomas M,et al. Exosomes from adipose-derived stem cells alleviate myocardial infarction via microRNA-31/FIH1/HIF-1α pathway [J]. J Mol Cell Cardiol,2022,162:10-19.
[11] de Almeida Oliveira NC,Neri EA,Silva CM,et al. Multicellular regulation of miR-196a-5p and miR-425-5 from adipose stem cell-derived exosomes and cardiac repair [J]. Clin Sci (Lond),2022,136(17):1281-1301.
[12] Watterston C,Zeng L,Onabadejo A,et al. MicroRNA26 attenuates vascular smooth muscle maturation via endothelial BMP signalling [J]. PLoS Genet,2019,15(5):e1008163.
[13] Arif M,Pandey R,Alam P,et al. MicroRNA-210-mediated proliferation,survival,and angiogenesis promote cardiac repair post myocardial infarction in rodents [J]. J Mol Med (Berl),2017,95(12):1369-1385.
[14] Gao L,Wang L,Wei Y,et al. Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine [J]. Sci Transl Med,2020,12(561):eaay1318.
[15] Song Y,Zhang C,Zhang J,et al. Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction [J]. Theranostics,2019,9(8):2346-2360.
[16] Galow AM,Wolfien M,Müller P,et al. Integrative cluster analysis of whole hearts reveals proliferative cardiomyocytes in adult mice [J]. Cells,2020,9(5):1144.
[17] Eulalio A,Mano M,Dal Ferro M,et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature,2012,492(7429):376-381.
[18] Gabisonia K,Prosdocimo G,Aquaro GD,et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs [J]. Nature,2019,569(7756):418-422.
[19] Gao F,Kataoka M,Liu N,et al. Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction [J]. Nat Commun,2019,10(1):1802.
[20] Shinde AV,Frangogiannis NG. Fibroblasts in myocardial infarction:a role in inflammation and repair [J]. J Mol Cell Cardiol,2014,70:74-82.
[21] Zhang Y,Wang Z,Lan D,et al. MicroRNA-24-3p alleviates cardiac fibrosis by suppressing cardiac fibroblasts mitophagy via downregulating PHB2 [J]. Pharmacol Res,2022,177:106124.
[22] Sun L,Zhu W,Zhao P,et al. Down-regulated exosomal microRNA-221 - 3p derived from senescent mesenchymal stem cells impairs heart repair [J]. Front Cell Dev Biol,2020,8:263.
[23] Wang Z,Wang Z,Gao L,et al. miR -222 inhibits cardiac fibrosis in diabetic mice heart via regulating Wnt/β-catenin-mediated endothelium to mesenchymal transition [J]. J Cell Physiol, 2020,235(3):2149-2160.
[24] Weil BR,Neelamegham S. Selectins and immune cells in acute myocardial infarction and post-infarction ventricular remodeling:pathophysiology and novel treatments [J]. Front Immunol,2019,10:300.
[25] Reis M,Mavin E,Nicholson L,et al. Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function [J]. Front Immunol,2018,9:2538.
[26] Zhao J,Li X,Hu J,et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization [J]. Cardiovasc Res,2019(7):115(7):1205-1216.
[27] Zhu J,Yao K,Guo J,et al. miR-181a and miR-150 regulate dendritic cell immune inflammatory responses and cardiomyocyte apoptosis via targeting JAK1-STAT1/c-Fos pathway [J]. J Cell Mol Med,2017,21(11):2884-2895.
[28] Xu R,Zhang F,Chai R,et al. Exosomes derived from pro‐inflammatory bone marrow‐derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization [J]. J Cell Mol Med,2019,23(11):7617-7631.
[29] Armstrong JP,Holme MN,Stevens MM. Re-engineering extracellular vesicles as smart nanoscale therapeutics [J]. ACS Nano,2017,11(1):69-83.
[30] Li YJ,Wu JY,Liu J,et al. Artificial exosomes for translational nanomedicine [J]. J Nanobiotechnology,2021,19(1):242.
[31] Li Z,Zhou X,Wei M,et al. In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9 [J]. Nano Lett,2019,19(1):19-28.
[32] Wang X,Chen Y,Zhao Z,et al. Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction [J]. J Am Heart Assoc,2018,7(15):e008737.
[33] Vandergriff A,Huang K,Shen D,et al. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide [J]. Theranostics,2018,8(7):1869-1878.
[34] Ni J,Liu X,Yin Y,et al. Exosomes derived from TIMP2-modified human umbilical cord mesenchymal stem cells enhance the repair effect in rat model with myocardial infarction possibly by the Akt/Sfrp2 pathway [J]. Oxid Med Cell Longev,2019,2019:1958941.
[35] Aksoy YA,Yang B,Chen W,et al. Spatial and temporal control of CRISPR-Cas9-mediated gene editing delivered via a light-triggered liposome system [J]. ACS Appl Mater Interfaces,2020,12(47):52433-52444.
[36] Hammons JA,Ingólfsson HI,Lee JRI,et al. Decoupling copolymer,lipid and carbon nanotube interactions in hybrid,biomimetic vesicles [J]. Nanoscale,2020,12(11):6545-6555.
[37] Zhang N,Song Y,Huang Z,et al. Monocyte mimics improve mesenchymal stem cell-derived extracellular vesicle homing in a mouse MI/RI model [J]. Biomaterials,2020,255:120168.
[38] Zhao S,Xu Z,Wang H,et al. Bioengineering of injectable encapsulated aggregates of pluripotent stem cells for therapy of myocardial infarction [J]. Nat Commun,2016,7:13306.
[39] Zhu D,Li Z,Huang K,et al. Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair [J]. Nat Commun,2021,12(1):1412.
[40] Hu S,Wang X,Li Z,et al. Platelet membrane and stem cell exosome hybrid enhances cellular uptake and targeting to heart injury [J]. Nano Today,2021,39:101210.
[41] Yao J,Huang K,Zhu D,et al. A minimally invasive exosome spray repairs heart after myocardial i nfarction [J]. ACS Nano,2021,15(7):11099-11111.
相似文献/References:
[1]宋菲,综述,俞梦越,等.干细胞来源的外泌体:心肌梗死治疗新启示[J].心血管病学进展,2016,(2):125.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.007]
SONG Fei,YU Mengyue.Exosomes Derived from Stem Cells: Novel Approach in Treatment of
Myocardial Infarction[J].Advances in Cardiovascular Diseases,2016,(7):125.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.007]
[2]姚雯,毛露,孙硕,等.心源性外泌体作为冠心病标志物和新靶点展望[J].心血管病学进展,2019,(6):844.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.002]
YAO Wen,MAO Lu,SUN Shuo,et al.Exogenous Exosome as A New Marker and Target of Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(7):844.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.002]
[3]韦余 胡科 温钞麟 邓玮.骨髓间充质干细胞干预心肌纤维化的增效措施[J].心血管病学进展,2019,(5):774.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.027]
Wei YuHu KeWen Chao LinDeng Wei.Synergistic Measures of Bone Marrow Mesenchymal Stem Cells in Intervention of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2019,(7):774.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.027]
[4]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(7):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[5]张伟 木胡牙提.外泌体源性miRNAs在心血管疾病中的研究进展[J].心血管病学进展,2020,(2):111.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.002]
Zhang Wei,Muhuyati.Exogenous miRNAs in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(7):111.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.002]
[6]李一凡 张智伟.巨噬细胞相关的外泌体在心血管疾病中的作用研究进展[J].心血管病学进展,2020,(8):839.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.014]
LI Yifan,ZHANG Zhiwei.Role of Macrophage-Related Exosomes in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(7):839.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.014]
[7]叶莎 杨翠玲 郑媛媛.骨髓间充质干细胞来源外泌体通过PI3K/Akt途径减轻H2O2诱导心肌细胞损伤[J].心血管病学进展,2022,(3):269.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
YE Sha,YANG Cuiling,ZHENG Yuanyuan.Bone Marrow Mesenchymal Stem Cells Derived Exosomes Attenuate H 2O2 Induced Cardiomyocyte Injury Via PI3K/Akt Pathway[J].Advances in Cardiovascular Diseases,2022,(7):269.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[8]戴越 周帆 穆军升.外源性电刺激诱导干细胞心肌向分化的研究进展[J].心血管病学进展,2022,(4):289.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.001]
DAI Yue,ZHOU Fan,MU Junsheng.The Use of Electrical Stimulation to Induce Cardiac Differentiation of?tem Cells for the Treatment of Myocardial Infarction[J].Advances in Cardiovascular Diseases,2022,(7):289.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.001]
[9]俞佳丽 景雨 张剑 陈楚 陆齐 顾周山 陈子微 周大胜 景宏美 潘丽华.间充质干细胞来源的外泌体在心肌梗死治疗中的研究进展[J].心血管病学进展,2022,(4):341.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.013]
YU JialiJING YuZHANG JianCHEN ChuLU QiGU ZhoushanCHEN ZiweiZHOU DashenJING HongmeiPAN Lihua.Exosomes Derived from Mesenchymal Stem Cells?n the Treatment of Myocardial Infarction[J].Advances in Cardiovascular Diseases,2022,(7):341.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.013]
[10]杨珂欣 李星辉 肖晨朦 姚晓涛 林萌 蔡佳.间充质干细胞来源外泌体改善心肌纤维化的研究进展[J].心血管病学进展,2022,(12):1123.[doi:10.16806/j.cnki.issn.1004-3934.20.10.015]
YANG Kexin LI Xinghui XIAO ChenmengYAO XiaotaoLIN MengCAI Jia.Improving Myocardial Fibrosis by Exosome Derived from Mesenchymal Stem Cell[J].Advances in Cardiovascular Diseases,2022,(7):1123.[doi:10.16806/j.cnki.issn.1004-3934.20.10.015]
[11]肖轶 余国龙.不同干细胞来源的外泌体在缺血性心脏病中的促血管新生作用[J].心血管病学进展,2022,(4):293.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]
XIAO Yi,YU Guolong?/html>.Application of Exosomes Derived from Various Stem Cells?n Ischemic Heart Disease[J].Advances in Cardiovascular Diseases,2022,(7):293.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]