参考文献/References:
[1].Molla MD,Bekele A,Melka DS,et al. Hyperuricemia and its associated factors among adult staff members of the ethiopian public health institute,ethiopia[J]. Int J Gen Med,2021,14:1437-1447.
[2].Singh JA,Gaffo A. Gout epidemiology and comorbidities. Semin Arthritis Rheum,2020,50(3S):S11-S16.
[3].Song J,Jin C,Shan Z,et al. prevalence and risk factors of hyperuricemia and gout:a cross-sectional survey from 31 provinces in mainland China [J]. J Transl Int Med,2022,10(2):134-145.
[4].Chu Y,Sun S,Huang Y,et al. Metagenomic analysis revealed the potential role of gut microbiome in gout [J]. NPJ Biofilms Microbiomes,2021,7(1):66.
[5].de Sordi L,Khanna V,Debarbieux L. The gut microbiota facilitates drifts in the genetic diversity and infectivity of bacterial viruses[J]. Cell Host Microbe,2017,22(6):801-808.e3.
[6].Nicholson JK,Holmes E,Kinross J,et al. Host-gut microbiota metabolic interactions[J]. Science,2012,336(6086):1262-1267.
[7].Stanford J,Charlton K,Stefoska-Needham A,et al. The gut microbiota profile of adults with kidney disease and kidney stones:a systematic review of the literature[J]. BMC Nephrol,2020,21(1):215.
[8].Méndez-Salazar EO,Vázquez-Mellado J,Casimiro-Soriguer CS,et al. Taxonomic variations in the gut microbiome of gout patients with and without tophi might have a functional impact on urate metabolism[J]. Mol Med,2021,27(1):50.
[9].Guo Z,Zhang J,Wang Z,et al. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans[J]. Sci Rep,2016,6:20602.
[10].Shao T,Shao L,Li H,et al. Combined signature of the fecal microbiome and metabolome in patients with gout[J]. Front Microbiol,2017,8:268.
[11].Yang HT,Xiu WJ,Liu JK,et al. Gut Microbiota characterization in patients with asymptomatic hyperuricemia:probiotics increased[J]. Bioengineered,2021,12(1):7263-7275.
[12].Park HK,Lee SJ. Treatment of gouty arthritis is associated with restoring the gut microbiota and promoting the production of short-chain fatty acids[J]. Arthritis Res Ther,2022,24(1):51.
[13].Song S,Lou Y,Mao Y,et al. Alteration of gut microbiome and correlated amino acid metabolism contribute to hyperuricemia and Th17-driven inflammation inUox-KO mice[J]. Front Immunol,2022,13:804306.
[14].Kurosaki M,Li Calzi M,Scanziani E,et al. Tissue- and cell-specific expression of mouse xanthine oxidoreductase gene in vivo:regulation by bacterial lipopolysaccharide[J]. Biochem J,1995,306( Pt 1):225-234.
[15].Srivastava M,Mallard C,Barke T,et al. A selenium-dependent xanthine dehydrogenase triggers biofilm proliferation in Enterococcus faecalis through oxidant production[J]. J Bacteriol,2011,193(7):1643-1652.
[16].Shu S,Mi W. Regulatory mechanisms of lipopolysaccharide synthesis in Escherichia coli[J]. Nat Commun,2022,13(1):4576.
[17].Liu Y,Yu P,Sun X,et al. Metabolite target analysis of human urine combined with pattern recognition techniques for the study of symptomatic gout[J]. Mol Biosyst,2012,8(11):2956-2963.
[18].Vadakedath S,Kandi V. Probable potential role of urate transporter genes in the development of metabolic disorders[J]. Cureus,2018,10(3):e2382.
[19].Xu X,Li C,Zhou P,et al. Uric acid transporters hiding in the intestine[J]. Pharm Biol,2016,54(12):3151-3155.
[20].Yin H,Liu N,Chen J. The role of the intestine in the development of hyperuricemia[J]. Front Immunol,2022,13:845684.
[21].Merriman TR. An update on the genetic architecture of hyperuricemia and gout[J]. Arthritis Res Ther,2015,17(1):98.
[22].Maiuolo J,Oppedisano F,Gratteri S,et al. Regulation of uric acid metabolism and excretion[J]. Int J Cardiol,2016,213:8-14.
[23].Lim MY,Rho M,Song YM,et al. Stability of gut enterotypes in Korean monozygotic twins and their association with biomarkers and diet[J]. Sci Rep,2014,4:7348.
[24].Pan L,Han P,Ma S,et al. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia[J]. Acta Pharm Sin B,2020,10(2):249-261.
[25].Ratajczak W,Ry? A,Mizerski A,et al. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs) [J] . Acta Biochim Pol,2019,66(1):1-12.
[26].Gou HZ,Zhang YL,Ren LF,et al. How do intestinal probiotics restore the intestinal barrier? [J]. Front Microbiol ,2022,13:929346.
[27].Balaguer F,Enrique M,Llopis S,et al. Lipoteichoic acid from Bifidobacterium animalis subsp. lactis BPL1:a novel postbiotic that reduces fat deposition via IGF-1 pathway[J]. Microb Biotechnol,2022,15(3):805-816.
[28].Chen M,Lin W,Li N,et al. Therapeutic approaches to colorectal cancervia?strategies based on modulation of gut microbiota[J]. Front Microbiol,2022,13:945533.
[29].Sun M,Wu W,Liu Z,et al. Microbiota metabolite short chain fatty acids,GPCR,and inflammatory bowel diseases[J]. J Gastroenterol,2017,52(1):1-8.
[30].Puertollano E,Kolida S,Yaqoob P. Biological significance of short-chain fatty acid metabolism by the intestinal microbiome[J]. Curr Opin Clin Nutr Metab Care,2014,17(2):139-144.
[31].Vieira AT,Galv?o I,Macia LM,et al. Dietary fiber and the short-chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice[J]. J Leukoc Biol,2017,101(1):275-284.
[32].Weisshaar S,Litschauer B,Reichardt B,et al. Cardiovascular risk and mortality in patients with hyperuricemia treated with febuxostat or allopurinol:a retrospective nation-wide cohort study in Austria 2014-2017[J]. Rheumatol Int,2022,42(9):1597-1603.
[33].Liu ZQ,Sun X,Liu ZB,et al. Phytochemicals in traditional Chinese medicine can treat gout by regulating intestinal flora through inactivating NLRP3 and inhibiting XOD activity[J]. J Pharm Pharmacol,2022,74(7):919-929.
[34].Wang LM,Wang P,Teka T,et al. 1H NMR and UHPLC/Q-Orbitrap-MS-based metabolomics combined with 16S rRNA gut microbiota analysis revealed the potential regulation mechanism of nuciferine in hyperuricemia rats[J]. J Agric Food Chem,2020,68(47):14059-14070.
[35].Bian M,Wang J,Wang Y,et al. Chicory ameliorates hyperuricemia via modulating gut microbiota and alleviating LPS/TLR4 axis in quail[J]. Biomed Pharmacother,2020,131:110719.
[36].Yang Q,Zhang J,Li J. Clinical effect of the guizhi shaoyao zhimu decoction in the treatment of hyperuricemia[J]. Biomed Res Int,2022:5186210.
[37].Kang L,Miao JX,Cao LH,et al. Total glucosides of herbaceous peony (Paeonia lactiflora Pall.) flower attenuate adenine- and ethambutol-induced hyperuricaemia in rats[J]. J Ethnopharmacol,2020,261:113054.
[38].Gao J,Azad MAK,Han H,et al. Impact of prebiotics on enteric diseases and oxidative stress[J]. Curr Pharm Des,2020,26(22):2630-2641.
[39].Guo Y,Yu Y,Li H,et al. Inulin supplementation ameliorates hyperuricemia and modulates gut microbiota in Uox-knockout mice[J]. Eur J Nutr,2021,60(4):2217-2230.
[40].Ni C,Li X,Wang L,et al. Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activityvia?a short-chain fatty acid-dependent mechanism[J]. Food Funct,2021,12(15):7054-7067.
[41].Wu Y,Ye Z,Feng P,et al. Limosilactobacillus fermentum?JL-3 isolated from "Jiangshui" ameliorates hyperuricemia by degrading uric acid[J]. Gut Microbes,2021,13(1):1-18.
[42].Xie YC,Jing XB,Chen X,et al. Fecal microbiota transplantation treatment for type 1 diabetes mellitus with malnutrition:a case report[J]. Ther Adv Chronic Dis,2022,13:20406223221117449.
[43].Zhang L,Ma X,Liu P,et al. Treatment and mechanism of fecal microbiota transplantation in mice with experimentally induced ulcerative colitis[J]. Exp Biol Med (Maywood),2021,246(13):1563-1575.
[44].Xie WR,Yang XY,Deng ZH,et al. Effects of washed microbiota transplantation on serum uric acid levels,symptoms,and intestinal barrier function in patients with acute and recurrent gout:a pilot study[J]. Dig Dis,2022,40(5):684-690.
相似文献/References:
[1]杨娟,综述,王佑华,等.肠道菌群与血管内炎症[J].心血管病学进展,2016,(3):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
YANG Juan,WANG Youhua,YUAN Suyun.Relationship Between Gut Microbiota and Vascular Inflammation[J].Advances in Cardiovascular Diseases,2016,(2):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
[2]张琪 宋晓鹏 任茂佳 吴广 赵兴胜.氧化三甲胺与心血管疾病的研究新进展[J].心血管病学进展,2020,(1):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
ZHANG Qi,SONG Xiaopeng,REN Maojia,et al.Trimethylamine Oxide and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(2):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
[3]李靖,任彭,努尔比耶·买买提,等.三甲胺-N-氧化物与冠心病和心力衰竭的研究进展[J].心血管病学进展,2020,(3):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
LI Jing,REN Peng,Nuerbiye·Maimaiti,et al.Trimethylamine-N-oxide and Coronary Heart Disease and Heart Failure[J].Advances in Cardiovascular Diseases,2020,(2):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
[4]王猛 江洪.肠道菌群及其代谢产物与心房颤动的研究进展[J].心血管病学进展,2022,(3):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
WANG Meng,JIANG Hong.Gut Microbiota an d Its Metabolites in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(2):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[5].肠-脑轴与心血管疾病的研究进展[J].心血管病学进展,2022,(7):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
TAN Wuping,W ANG Meng,ZHOU Xiaoya.Gut-Brain Axis and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(2):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[6]刘杏利 高中山 段豪亮 赵奕 马玉兰.肠道菌群及其代谢物与心律失常关系的研究进展[J].心血管病学进展,2022,(11):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]
LIU Xingli,GAO Zhongshan,DUAN Haoliang,et al.The Relationship Between Intestinal Flora and Its Metabolites and Arrhythmia[J].Advances in Cardiovascular Diseases,2022,(2):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]
[7]张嘉原 张莉.果糖代谢与血脂异常的研究进展[J].心血管病学进展,2022,(12):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
ZHANG Jiayuan ZHANG Li.Fructose Metabolism and DyslipidemiaA Systematic Review[J].Advances in Cardiovascular Diseases,2022,(2):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
[8]蒋振江 刘富强 王军奎.肠道菌群与肥胖的关系研究进展[J].心血管病学进展,2023,(3):265.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.017]
JIANG Zhenjiang,LIU Fuqiang,WANG Junkui.The Relationship Between Gut Microbiota and Obesity[J].Advances in Cardiovascular Diseases,2023,(2):265.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.017]
[9]李帅 刘富强 王军奎.酒精摄入对肠道菌群的影响及其机制研究进展[J].心血管病学进展,2023,(2):172.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.017]
LI ShuaiLIU FuqiangWANG Junkui.Effects of Alcohol Intake on Intestinal Flora and Its Mechanism[J].Advances in Cardiovascular Diseases,2023,(2):172.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.017]
[10]黄露霈 成泽东.肠道微生物细胞外囊泡对心血管系统影响的研究进展[J].心血管病学进展,2023,(4):355.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.015]
UANG Lupei,CHENG Zedong ?/html>.Research Progress on the Effect of Intestinal Microbial?#160Extracellular Vesicles on Cardiovascular System[J].Advances in Cardiovascular Diseases,2023,(2):355.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.015]